Abstract

In a leakage channel fiber, the desired fundamental mode (FM) has negligible waveguide loss. Higher-order modes (HOM) are designed to have much higher waveguide losses so that they are practically eliminated during propagation. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional FEM mode solver considering infinite cladding. In this work, we conducted, for the first time, careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work, for the first time, demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary, even in double-clad fibers, with HOM losses in excess of 20dB/m measured in the hexagonal LCF with ~50µm core diameter while keeping FM loss negligible.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  2. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B24(8), 1689–1697 (2007).
    [CrossRef]
  3. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).
  4. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009).
    [CrossRef]
  5. C. Jollivet, K. Wei, B. Samson, and A. Schulzgen, “Low-Loss, Single-Mode Propagation in Large-Mode-Area Leakage Channel Fiber from 1 to 2 μm,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM3I.4.
  6. X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express19(27), 26515–26528 (2011).
    [CrossRef] [PubMed]
  7. X. Ma, A. Kaplan, and A. Galvanauskas, “Experimental characterization of robust single-mode operation of 50µm and 60µm core chirally coupled core optical fibers,” PhotonicsWest, paper 8237–59, (2012).
  8. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. C. Gu, and L. Dong, “Mode Area Scaling with All-solid Photonic Bandgap Fibers,” Opt. Express20(24), 26363–26372 (2012).
    [CrossRef] [PubMed]
  9. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  10. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]
  11. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011).
    [CrossRef] [PubMed]
  12. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012).
    [CrossRef] [PubMed]
  13. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express21(3), 2642–2656 (2013).
    [CrossRef] [PubMed]
  14. R. A. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Resonant bend loss in leakage channel fibers,” Opt. Lett.37(15), 3147–3149 (2012).
    [CrossRef] [PubMed]
  15. R. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Anomalous bent loss in large-mode-area leakage channel fibers,” Conference on Lasers and Electro Optics, paper CM1N.3, 2012.
  16. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  17. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  18. T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express17(9), 7615–7629 (2009).
    [CrossRef] [PubMed]
  19. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
    [CrossRef]

2013 (1)

2012 (3)

2011 (4)

2009 (3)

2008 (1)

2007 (1)

2004 (1)

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

2000 (1)

Alkeskjold, T. T.

Barankov, R. A.

Broeng, J.

Chang, G.

Dajani, I.

Dong, L.

Eidam, T.

Fermann, M. E.

Foy, P.

Fu, L.

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009).
[CrossRef]

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).

Galvanauskas, A.

X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express19(27), 26515–26528 (2011).
[CrossRef] [PubMed]

X. Ma, A. Kaplan, and A. Galvanauskas, “Experimental characterization of robust single-mode operation of 50µm and 60µm core chirally coupled core optical fibers,” PhotonicsWest, paper 8237–59, (2012).

Ghalmi, S.

Goldberg, L.

Gu, G. C.

Hansen, K. R.

Hawkins, T.

Jansen, F.

Jauregui, C.

Jeong, Y.

Kaplan, A.

X. Ma, A. Kaplan, and A. Galvanauskas, “Experimental characterization of robust single-mode operation of 50µm and 60µm core chirally coupled core optical fibers,” PhotonicsWest, paper 8237–59, (2012).

Kliner, D. A. V.

Kong, F.

Koplow, J. P.

Koshiba, M.

T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express17(9), 7615–7629 (2009).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Lægsgaard, J.

Li, J.

Limpert, J.

Liu, C. H.

Ma, X.

X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express19(27), 26515–26528 (2011).
[CrossRef] [PubMed]

X. Ma, A. Kaplan, and A. Galvanauskas, “Experimental characterization of robust single-mode operation of 50µm and 60µm core chirally coupled core optical fibers,” PhotonicsWest, paper 8237–59, (2012).

Marcinkevicius, A.

Mcclane, D.

McKay, H. A.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending Effective Area of Fundamental Mode in Optical Fibers,” J. Lightwave Technol.27(11), 1565–1570 (2009).
[CrossRef]

Murao, T.

Nicholson, J. W.

Nilsson, J.

Otto, H. J.

Payne, D.

Peng, X.

Ramachandran, S.

Robin, C.

Sahu, J.

Saitoh, K.

Samson, B.

Schmidt, O.

Schreiber, T.

Smith, A. V.

Smith, J. J.

Stutzki, F.

Thomas, B. K.

Tünnermann, A.

Ward, B.

Wei, K.

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).

Wirth, C.

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).

Yablon, A. D.

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

IEEE J. Sel. Top. in Quant. Elect. (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large core leakage channel fibers,” IEEE J. Sel. Top. in Quant. Elect.14, 47–53 (2009).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (10)

X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” Opt. Express19(27), 26515–26528 (2011).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express17(9), 7615–7629 (2009).
[CrossRef] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. C. Gu, and L. Dong, “Mode Area Scaling with All-solid Photonic Bandgap Fibers,” Opt. Express20(24), 26363–26372 (2012).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011).
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012).
[CrossRef] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express21(3), 2642–2656 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (3)

C. Jollivet, K. Wei, B. Samson, and A. Schulzgen, “Low-Loss, Single-Mode Propagation in Large-Mode-Area Leakage Channel Fiber from 1 to 2 μm,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM3I.4.

X. Ma, A. Kaplan, and A. Galvanauskas, “Experimental characterization of robust single-mode operation of 50µm and 60µm core chirally coupled core optical fibers,” PhotonicsWest, paper 8237–59, (2012).

R. Barankov, K. Wei, B. Samson, and S. Ramachandran, “Anomalous bent loss in large-mode-area leakage channel fibers,” Conference on Lasers and Electro Optics, paper CM1N.3, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross-section images of Re-LCFs used in this work, (a) circular Re-LCF and (b) hexagonal Re-LCF.

Fig. 2
Fig. 2

Designs used for the simulation, (a) circular and (b) hexagonal Re-LCF. The designs are acquired from feature boundaries in the cross-section images.

Fig. 3
Fig. 3

Fourier transform of the spectrum versus differential group delay for circular LCF coil at diameter of 50cm. The insets are the resolved LP11 mode pattern and phase.

Fig. 4
Fig. 4

Measured relative LP11 mode content (circles) versus coiled fiber length at various coil diameters for the circular Re-LCF and their linear fit (line).

Fig. 5
Fig. 5

Measured relative LP11 mode content at various coil diameters for the circular Re-LCF.

Fig. 6
Fig. 6

Simulated and measured mode losses in the circular Re-LCF.

Fig. 7
Fig. 7

Simulated and measured mode loss in the hexagonal Re-LCF.

Fig. 8
Fig. 8

Simulated effective mode area in the hexagonal Re-LCF.

Fig. 9
Fig. 9

Wavelength dependence of the measured LP11 mode content in the 4m hexagonal Re-LCF in 35cm coil. Coiled length is 1.37m.

Fig. 10
Fig. 10

Simulated and measured differential group delay between LP01 and LP11 modes in the circular Re-LCF. The simulation was done for a straight fiber. The measurements were performed at a range of coil diameters.

Tables (1)

Tables Icon

Table 1 Fiber lengths of the circular Re-LCF used in the experiment

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eq ( x,y )= n s ( x,y )(1+x/R)

Metrics