Abstract

Although Doppler optical coherence tomography techniques have enabled the imaging of blood flow in mid-sized vessels in biological tissues, the generation of velocity maps of capillary networks remains a challenge. To better understand the origin and information content of the Doppler signal from small vessels and limitations of such measurements, we used joint spectral and time domain optical coherence tomography to monitor the flow in a model, semitransparent microchannel device. The results obtained for Intralipid, whole blood, as well as separated red blood cells indicate that the technique is suitable to record velocity profiles in vitro, in a range of microchannel configurations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
    [CrossRef] [PubMed]
  2. G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001).
    [CrossRef] [PubMed]
  3. S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
    [PubMed]
  4. H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
    [CrossRef] [PubMed]
  5. A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
    [PubMed]
  6. M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974).
    [CrossRef] [PubMed]
  7. T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
    [CrossRef] [PubMed]
  8. C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).
  9. R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
    [CrossRef] [PubMed]
  10. H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986).
    [PubMed]
  11. R. Lima, “Flow behavior of labeled red blood cells in microchannels: A confocal micro-PTV assessment,” IFMBE Proc.31, 1047–1050 (2010).
    [CrossRef]
  12. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992).
    [CrossRef]
  13. R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
    [CrossRef] [PubMed]
  14. Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
    [CrossRef]
  15. L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
    [CrossRef]
  16. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  17. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010).
    [CrossRef] [PubMed]
  18. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
    [CrossRef] [PubMed]
  19. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  20. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
    [CrossRef] [PubMed]
  21. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in Spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  22. X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
    [CrossRef] [PubMed]
  23. X. Q. Xu, Y. C. Ahn, and Z. P. Chen, “Feasibility of Doppler variance imaging for red blood cell aggregation characterization,” J. Biomed. Opt.14(6), 060507 (2009).
    [CrossRef] [PubMed]
  24. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  25. X. J. Wang, T. E. Milner, Z. P. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt.36(1), 144–149 (1997).
    [CrossRef] [PubMed]
  26. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by Optical Doppler Tomography,” Opt. Lett.20(11), 1337–1339 (1995).
    [CrossRef] [PubMed]
  27. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  28. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  29. Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
    [CrossRef] [PubMed]
  30. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
    [CrossRef] [PubMed]
  31. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
    [CrossRef]
  32. S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003).
    [CrossRef] [PubMed]
  33. L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
    [CrossRef]
  34. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  35. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009).
    [CrossRef] [PubMed]
  36. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  37. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
    [CrossRef] [PubMed]
  38. J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
    [CrossRef]
  39. S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
    [CrossRef] [PubMed]
  40. C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
    [CrossRef] [PubMed]
  41. Y. C. Ahn, W. Y. Jung, J. Zhang, and Z. P. Chen, “Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography,” Opt. Express13(20), 8164–8171 (2005).
    [CrossRef] [PubMed]
  42. H. Bruus, “Theoretical microfluidics,”(Oxford University Press, 2008).
  43. J. H. Yun, M.-S. Chun, and H. W. Jung, “The geometry effect on steady electrokinetic flows in curved rectangular microchannels,” Phys. Fluids 22(5), 052004–1 −10 (2010).
    [CrossRef]
  44. Y. C. Ahn, W. Jung, and Z. P. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
    [CrossRef] [PubMed]
  45. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
    [CrossRef] [PubMed]
  46. N. Maeda, “Erythrocyte rheology in microcirculation,” Jpn. J. Physiol.46(1), 1–14 (1996).
    [CrossRef] [PubMed]
  47. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
    [CrossRef] [PubMed]
  48. A. Alrifaiy and K. Ramser, “How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte,” Biomed. Opt. Express2(8), 2299–2306 (2011).
    [CrossRef] [PubMed]
  49. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

A. Alrifaiy and K. Ramser, “How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte,” Biomed. Opt. Express2(8), 2299–2306 (2011).
[CrossRef] [PubMed]

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (6)

2008 (6)

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
[CrossRef] [PubMed]

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

2007 (2)

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Y. C. Ahn, W. Jung, and Z. P. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

2005 (4)

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Y. C. Ahn, W. Y. Jung, J. Zhang, and Z. P. Chen, “Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography,” Opt. Express13(20), 8164–8171 (2005).
[CrossRef] [PubMed]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

2004 (3)

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (1)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001).
[CrossRef] [PubMed]

1999 (1)

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

1998 (2)

Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (1)

N. Maeda, “Erythrocyte rheology in microcirculation,” Jpn. J. Physiol.46(1), 1–14 (1996).
[CrossRef] [PubMed]

1995 (2)

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by Optical Doppler Tomography,” Opt. Lett.20(11), 1337–1339 (1995).
[CrossRef] [PubMed]

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

1992 (1)

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992).
[CrossRef]

1986 (1)

H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986).
[PubMed]

1981 (1)

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
[CrossRef] [PubMed]

1975 (1)

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

1974 (1)

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974).
[CrossRef] [PubMed]

Adrian, R. J.

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992).
[CrossRef]

Ahn, Y. C.

Alonso, C.

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Alrifaiy, A.

An, L.

Bachman, M.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Bajraszewski, T.

Baker, M.

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974).
[CrossRef] [PubMed]

Barry, S.

Berman, H. J.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Bertuglia, S.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Bitsch, L.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Boas, D. A.

Boppart, S. A.

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Bruus, H.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Cable, A. E.

Chen, Z.

X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
[CrossRef] [PubMed]

Chen, Z. P.

X. Q. Xu, Y. C. Ahn, and Z. P. Chen, “Feasibility of Doppler variance imaging for red blood cell aggregation characterization,” J. Biomed. Opt.14(6), 060507 (2009).
[CrossRef] [PubMed]

Y. C. Ahn, W. Jung, and Z. P. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Y. C. Ahn, W. Y. Jung, J. Zhang, and Z. P. Chen, “Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography,” Opt. Express13(20), 8164–8171 (2005).
[CrossRef] [PubMed]

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

X. J. Wang, T. E. Milner, Z. P. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt.36(1), 144–149 (1997).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
[CrossRef] [PubMed]

Cochrane, T.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
[CrossRef] [PubMed]

Colantuoni, A.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Dave, D.

DiGiovanni, P. R.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Dragostinoff, N.

Drexler, W.

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Earnshaw, J. C.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
[CrossRef] [PubMed]

Einav, S.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Fang, Z. P.

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

Fercher, A. F.

Fine, S.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Fridman, J. D.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Fuhro, R. L.

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Fujimoto, J. G.

Gaehtgens, P.

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Goldsmith, H. L.

H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986).
[PubMed]

Golster, H.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Gorczynska, I.

Gordon, M. L.

Götzinger, E.

Grulkowski, I.

Hitzenberger, C. K.

Imai, Y.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

Ishikawa, T.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

Jiang, J. Y.

Jung, W.

Jung, W. Y.

Keane, R. D.

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992).
[CrossRef]

Kiesslich, O.

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Kinnunen, M.

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

Klank, H.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Kowalczyk, A.

Kutter, J. P.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Lauri, J.

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

Leitgeb, R. A.

Lerche, D.

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Li, G. P.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Li, S. G.

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

Ligler, F. S.

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
[CrossRef] [PubMed]

Lima, R.

R. Lima, “Flow behavior of labeled red blood cells in microchannels: A confocal micro-PTV assessment,” IFMBE Proc.31, 1047–1050 (2010).
[CrossRef]

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Lindén, M.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Lo, E. H.

Lo, S.

Love, A. H. G.

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
[CrossRef] [PubMed]

Madarame, H.

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

Maeda, N.

G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001).
[CrossRef] [PubMed]

N. Maeda, “Erythrocyte rheology in microcirculation,” Jpn. J. Physiol.46(1), 1–14 (1996).
[CrossRef] [PubMed]

Mandeville, E. T.

Marks, D. L.

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Matcher, S. J.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Mchedlishvili, G.

G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001).
[CrossRef] [PubMed]

Milner, T. E.

Minamiyama, M.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
[PubMed]

Moger, J.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

Mok, A.

Myllyla, R.

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

Nakano, A.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
[PubMed]

Nelson, J. S.

Niimi, H.

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
[PubMed]

Nilsson, G.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Nishio, S.

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
[CrossRef] [PubMed]

Okamoto, K.

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
[CrossRef] [PubMed]

Okuda, R.

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

Olesen, L. H.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Parikh, D. S.

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Pekar, J.

Pircher, M.

Pries, A. R.

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Proskurin, S. G.

S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003).
[CrossRef] [PubMed]

Qi, B.

Radhakrishnan, H.

Ramser, K.

Raskin, L.

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Ruvinskaya, S.

Sakadzic, S.

Schmetterer, L.

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Seng-Yue, E.

Shore, A.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

Sjöberg, F.

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

Sokolova, I. A.

S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003).
[CrossRef] [PubMed]

Srinivas, S.

Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Srinivasan, V. J.

Sugii, Y.

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
[PubMed]

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Takeda, M.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Tanaka, S.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

Tsubota, K. I.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

Tsubota, K.-i.

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Turitto, V. T.

H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986).
[PubMed]

Vitkin, I. A.

Wada, S.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Wang, L.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Wang, M.

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

Wang, R.

Wang, R. K.

Wang, X. J.

Wang, Y.

Wayland, H.

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974).
[CrossRef] [PubMed]

Werkmeister, R. M.

Westergaard, C. H.

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Wilson, B. C.

Winlove, C. P.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

Wojtkowski, M.

Wu, W.

Xi, C. W.

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Xu, W.

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Xu, X.

X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
[CrossRef] [PubMed]

Xu, X. Q.

X. Q. Xu, Y. C. Ahn, and Z. P. Chen, “Feasibility of Doppler variance imaging for red blood cell aggregation characterization,” J. Biomed. Opt.14(6), 060507 (2009).
[CrossRef] [PubMed]

Xu, Z. G.

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

Yamaguchi, T.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

Yang, V. X. D.

Yoon, S. F.

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

Yu, L.

X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, J.

Am, J. Physiol. (1)

C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).

Anal. Chem. (2)

F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Sci. Res. (1)

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992).
[CrossRef]

Biomed. Microdevices (1)

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Biorheology (1)

S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975).
[PubMed]

Clin. Hemorheol. Microcirc. (1)

A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003).
[PubMed]

Exp. Fluids (1)

L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008).
[CrossRef] [PubMed]

IFMBE Proc. (1)

R. Lima, “Flow behavior of labeled red blood cells in microchannels: A confocal micro-PTV assessment,” IFMBE Proc.31, 1047–1050 (2010).
[CrossRef]

J. Biomech. (1)

R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

X. Q. Xu, Y. C. Ahn, and Z. P. Chen, “Feasibility of Doppler variance imaging for red blood cell aggregation characterization,” J. Biomed. Opt.14(6), 060507 (2009).
[CrossRef] [PubMed]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004).
[CrossRef] [PubMed]

S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011).
[CrossRef] [PubMed]

J. Phys. D (1)

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005).
[CrossRef]

Jpn. J. Physiol. (2)

G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001).
[CrossRef] [PubMed]

N. Maeda, “Erythrocyte rheology in microcirculation,” Jpn. J. Physiol.46(1), 1–14 (1996).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005).
[CrossRef]

Med. Biol. Eng. Comput. (1)

T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981).
[CrossRef] [PubMed]

Microvasc. Res. (2)

H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999).
[CrossRef] [PubMed]

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004).
[CrossRef]

Opt. Express (10)

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

Y. C. Ahn, W. Y. Jung, J. Zhang, and Z. P. Chen, “Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography,” Opt. Express13(20), 8164–8171 (2005).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in Spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Photochem. Photobiol. (1)

Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003).
[CrossRef] [PubMed]

Physiol. Meas. (1)

Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008).
[CrossRef]

Thromb. Haemost. (1)

H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986).
[PubMed]

Other (2)

H. Bruus, “Theoretical microfluidics,”(Oxford University Press, 2008).

J. H. Yun, M.-S. Chun, and H. W. Jung, “The geometry effect on steady electrokinetic flows in curved rectangular microchannels,” Phys. Fluids 22(5), 052004–1 −10 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the channel geometry and coordinate system; d-depth, w-width, Q-volumetric flow rate. (b) Schematic diagram of velocity profiles along width (vertical profile) and depth (horizontal profile), v y velocity in the y-direction. (c) Numerical simulation showing velocity profiles at the vertical section (along x axis), for three values of the aspect ratio γ; in this case d stays constant while w have been changed. The same aspect ratios was used in our experiments.

Fig. 2
Fig. 2

Scheme of Doppler OCT flow measurement and data visualization: (a) Coordinate system for flow through optical beam: Q- volumetric flow rate, vmax – blood flow velocity in the centre of capillary, vz – axial velocity component, vx – transverse velocity component, α – angle between the light propagation path and the direction of flow. (b) One-dimensional data presents spatial distribution of vz and is called Doppler velocity profile (i.). Afterword Doppler velocity profile is color-coded. Red and blue indicate flow in opposite directions. The value of the axial velocity is displayed as color saturation (ii.). When three-dimensional data are collected then velocity map is created (iii). (Also see subsection 3.2.)

Fig. 3
Fig. 3

(a) The experimental set-up. CMOS - CMOS camera, DG – diffraction grating, PC - polarization controller, NDF - neutral density filter, DC - dispersion compensation, RM –reference mirror, c, L1, L2 - lenses, MO – microscope objective. (b) Scanning protocol used in experiments; Trep – repetition time.

Fig. 4
Fig. 4

Schematic drawing of rectangular microchannel for two different types of branching in the middle of the channel (indicated as 1. and 2.): (a) Top view of the channel. (b) Structural en face OCT projections of Intralipid 0.5% flow in microfluidics system. Marked areas #1 and #2 indicate the region taken for detailed analysis in the section 4. (c) Velocity map corresponding to structural en face image. The reversal of flow is observed in channel’ trifurcation.

Fig. 5
Fig. 5

Three-dimensional imaging of Intralipid flow in the microfluidic device in the region with a cross-section of 300µm × 40µm (#1, γ = 0.13). (a) An example of structural OCT image from 3D data set. (b) Axial velocity map corresponding to the structural image. (c) Three-dimensional representation of axial velocity profiles obtained from OCT data. (d) Comparison of ensemble-averaged total velocity of Intralipid with the theoretical model.

Fig. 6
Fig. 6

Three-dimensional imaging of Intralipid flow in microfluidics device localized in the multiple channels region with 6 parallel channels, cross-section of 50µm × 40µm each (#2, γ = 0.8). (a) An example of structural OCT image from 3D data set. The Intralipid is observed only in 4 channels from 6. (b) Axial velocity map corresponding to the structural image. The flow is observed in 3 channels from 6, because of flow resistances and clogging of the channels; (c) Three-dimensional representation of axial velocity profiles obtained from OCT data; (d) Comparison of ensemble-averaged total velocity of Intralipid from the central channel and the theoretical model in the central plane.

Fig. 7
Fig. 7

Three-dimensional imaging of Intralipid flow in microfluidics device. Flow behavior at the beginning, in the central region and at the end of the channel is presented, respectively. (a) An example of structural OCT image from 3D data set. (b) Axial velocity map corresponding to the structural image. Please note, that there is no flow visible in one of the channel in the central region. (c) Three-dimensional representation of axial velocity profiles obtained from OCT data. (d) Axial velocity profile in the central plane.

Fig. 8
Fig. 8

Three-dimensional imaging of in vitro whole blood flow in a microfluidics device. First panel: Flow behavior at the beginning of the microchannel with a cross-section of 300µm × 40µm. (a) Image of blood used in the experiment obtained from an optical microscope. The image size is 135 µm × 110 µm. (b) An example of structural OCT image from 3D data set. (c) Velocity map corresponding to the structural image. (d) Three-dimensional representation of axial velocity profiles obtained from OCT data. (e-f) Comparison of ensemble-averaged velocity of Intralipid and the theoretical model ((e) - vertical cut, (f) – horizontal cut). Second and third panel: Blood flow in the central region and at the end of the microfluidics device.(a) An example of structural OCT image from 3D data set. (b) Axial velocity map corresponding to the structural image. (c) Three-dimensional representation of axial velocity profiles obtained from OCT data. (d) Averaged axial velocity profile in the central plane.

Fig. 9
Fig. 9

Flow measurement of different concentration of RBCs and Intralipid; Images obtained for different flow velocity values. (a) Image of the blood used in the experiment obtained from an optical microscope. The image size is 137 µm × 111 µm. (b) Structural M-scan. (c) Doppler OCT M-scan, red line indicating depth position from which information about axial velocity was taken. (d) Axial velocity value obtained for one depth position, measured in time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v y ( x,z )= 48Q π 3 dw i=odd 1 i 3 [ 1 cosh( iπ x d ) cosh( iπ w 2d ) sin( iπ z d ) ] 1 i=odd 1 i 5 192 π 5 d w tanh( iπ w 2d ) ,
f D = 2 v z c f 0 = 2 v max cosα c f 0 = 2 v max cosα λ 0 ,
v = z, max range ± λ 0 4Δt .

Metrics