Abstract

The oceanic mixed layer is a nearly homogenous region of the upper ocean which, in principle, has a little or no variation in turbulence strength, temperature or density with depth. This layer mediates oceanic fluxes of gas, momentum and heat. Here, based on the chosen [1] marine Lidar system, we have carried out estimates of the depth penetration of the Lidar when compared to the local mixed layer depth. On average, we have found that at least 50% of the global oceanic mixed layer depth is accessible to the Lidar observations. When operating in a single scattering mode, which is more attenuating but more amenable to analysis, the modeled Lidar was found to access 0.4 of global mixed layer depth in half of the cases. The single scattering Lidar was found to access a large fraction of the equatorial mixed layer - a region very important when addressing global climatic issues. In a coastal environment such as the Gulf of Mexico the single scattering Lidar was found to penetrate upper half of the mixed layer, underscoring the potential for Lidar to address environmental issues there.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Churnside, V. Tatarskii, and J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt.37, 3105–3112 (1998).
    [CrossRef]
  2. J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
    [CrossRef]
  3. D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
    [CrossRef]
  4. R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt.38, 2384–2397 (1999).
    [CrossRef]
  5. D. Bogucki, J. Piskozub, M.-E. Carr, and G. Spiers, “Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express15, 13988–13996 (2007).
    [CrossRef] [PubMed]
  6. R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
    [CrossRef]
  7. S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
    [CrossRef]
  8. K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).
  9. D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
    [CrossRef]
  10. A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
    [CrossRef] [PubMed]
  11. J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
    [CrossRef]
  12. J. Holte and L. Talley, “A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation,” J Atmos. Ocean Tech.26, 1920–1939 (2009).
    [CrossRef]
  13. S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
    [CrossRef]
  14. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES Journal of Marine Science: Journal du Conseil66, 778–789 (2009).
    [CrossRef]
  15. J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
    [CrossRef]
  16. J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
    [CrossRef] [PubMed]
  17. H. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt.21, 2996–3001 (1982).
    [CrossRef] [PubMed]
  18. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, 1994).
  19. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  20. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41, 2705–2714 (2002).
    [CrossRef] [PubMed]
  21. K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr.37, 501–509 (1992).
    [CrossRef]
  22. V. I. Feigels and Y. I. Kopilevich, “Remote sensing of subsurface layers of turbid seawater with the help of an optical lidar system,” in “High Latitude Optics,” (International Society for Optics and Photonics, 1993), pp. 34–42.
  23. D. Phillips and B. Koerber, “A theoretical study of an airborne laser technique for determining sea water turbidity,” Aust. J. Phys.37, 75–90 (1984).
    [CrossRef]
  24. B. Billard, “Remote sensing of scattering coefficient for airborne laser hydrography,” Appl. Opt.25, 2099–2108 (1986).
    [CrossRef] [PubMed]
  25. Z. Lee, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (2006).
  26. R. E. Walker, Marine Light Field Statistics (A Wiley Interscience Publication, 1994), p. 660.
  27. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).
  28. R. Austin and T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Optical Engineering25, 253471–253471 (1986).
    [CrossRef]
  29. T. K. Westberry, G. DallOlmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express18, 15419–15425 (2010).
    [CrossRef] [PubMed]
  30. T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 deg,” Appl. Opt.29, 4658–4665 (1990).
    [CrossRef] [PubMed]
  31. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt.40, 5503–5507 (2001).
    [CrossRef]
  32. T. H. Petzold, “Volume scattering functions for selected ocean waters,” Technical report, U. of California San DiegoSIO Ref72, 1–79 (1972).
  33. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt.48, 6811–6819 (2009).
    [CrossRef] [PubMed]
  34. D. Scavia and Y. Liu, “Exploring estuarine nutrient susceptibility,” Environ. Sci. Technol.43, 3474–3479 (2009).
    [CrossRef] [PubMed]
  35. Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
    [CrossRef]
  36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications Incorporated, 1974).
  37. J. Acker and G. Leptoukh, “Online analysis enhances use of nasa earth science data,” Eos, Transactions American Geophysical Union88, 14 (2007).
    [CrossRef]

2013 (1)

2012 (4)

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

2010 (2)

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

T. K. Westberry, G. DallOlmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express18, 15419–15425 (2010).
[CrossRef] [PubMed]

2009 (6)

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt.48, 6811–6819 (2009).
[CrossRef] [PubMed]

D. Scavia and Y. Liu, “Exploring estuarine nutrient susceptibility,” Environ. Sci. Technol.43, 3474–3479 (2009).
[CrossRef] [PubMed]

Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
[CrossRef]

J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES Journal of Marine Science: Journal du Conseil66, 778–789 (2009).
[CrossRef]

J. Holte and L. Talley, “A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation,” J Atmos. Ocean Tech.26, 1920–1939 (2009).
[CrossRef]

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

2007 (4)

S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
[CrossRef]

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

J. Acker and G. Leptoukh, “Online analysis enhances use of nasa earth science data,” Eos, Transactions American Geophysical Union88, 14 (2007).
[CrossRef]

D. Bogucki, J. Piskozub, M.-E. Carr, and G. Spiers, “Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express15, 13988–13996 (2007).
[CrossRef] [PubMed]

2006 (1)

Z. Lee, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (2006).

2005 (1)

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

2002 (1)

2001 (3)

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt.40, 5503–5507 (2001).
[CrossRef]

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

1999 (1)

1998 (1)

1993 (1)

V. I. Feigels and Y. I. Kopilevich, “Remote sensing of subsurface layers of turbid seawater with the help of an optical lidar system,” in “High Latitude Optics,” (International Society for Optics and Photonics, 1993), pp. 34–42.

1992 (1)

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr.37, 501–509 (1992).
[CrossRef]

1990 (1)

1986 (2)

B. Billard, “Remote sensing of scattering coefficient for airborne laser hydrography,” Appl. Opt.25, 2099–2108 (1986).
[CrossRef] [PubMed]

R. Austin and T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Optical Engineering25, 253471–253471 (1986).
[CrossRef]

1984 (1)

D. Phillips and B. Koerber, “A theoretical study of an airborne laser technique for determining sea water turbidity,” Aust. J. Phys.37, 75–90 (1984).
[CrossRef]

1982 (1)

1972 (1)

T. H. Petzold, “Volume scattering functions for selected ocean waters,” Technical report, U. of California San DiegoSIO Ref72, 1–79 (1972).

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications Incorporated, 1974).

Acker, J.

J. Acker and G. Leptoukh, “Online analysis enhances use of nasa earth science data,” Eos, Transactions American Geophysical Union88, 14 (2007).
[CrossRef]

Arnone, R.

S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

Austin, R.

R. Austin and T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Optical Engineering25, 253471–253471 (1986).
[CrossRef]

Behrenfeld, M. J.

Billard, B.

Bogucki, D.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

D. Bogucki, J. Piskozub, M.-E. Carr, and G. Spiers, “Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express15, 13988–13996 (2007).
[CrossRef] [PubMed]

Boss, E.

Carr, M.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

Carr, M.-E.

Churnside, J.

Churnside, J. H.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
[CrossRef] [PubMed]

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES Journal of Marine Science: Journal du Conseil66, 778–789 (2009).
[CrossRef]

DallOlmo, G.

DAsaro, E.

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

Derada, S.

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

Donaghay, P. L.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
[CrossRef] [PubMed]

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES Journal of Marine Science: Journal du Conseil66, 778–789 (2009).
[CrossRef]

Dong, S.

S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
[CrossRef]

Drennan, W.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

Feigels, V. I.

V. I. Feigels and Y. I. Kopilevich, “Remote sensing of subsurface layers of turbid seawater with the help of an optical lidar system,” in “High Latitude Optics,” (International Society for Optics and Photonics, 1993), pp. 34–42.

Gardner, W.

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

Gille, S.

S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
[CrossRef]

Gordon, H.

Hacker, P. W.

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

Hallock, Z.

Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
[CrossRef]

Hara, T.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

Holte, J.

J. Holte and L. Talley, “A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation,” J Atmos. Ocean Tech.26, 1920–1939 (2009).
[CrossRef]

Jarosz, E.

Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
[CrossRef]

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

Koerber, B.

D. Phillips and B. Koerber, “A theoretical study of an airborne laser technique for determining sea water turbidity,” Aust. J. Phys.37, 75–90 (1984).
[CrossRef]

Kopilevich, Y. I.

V. I. Feigels and Y. I. Kopilevich, “Remote sensing of subsurface layers of turbid seawater with the help of an optical lidar system,” in “High Latitude Optics,” (International Society for Optics and Photonics, 1993), pp. 34–42.

Ladner, S.

S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

Lebedev, K. V.

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

Lee, C.

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

Lee, J. H.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
[CrossRef] [PubMed]

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

Lee, Z.

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

Z. Lee, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (2006).

Leptoukh, G.

J. Acker and G. Leptoukh, “Online analysis enhances use of nasa earth science data,” Eos, Transactions American Geophysical Union88, 14 (2007).
[CrossRef]

Liu, Y.

D. Scavia and Y. Liu, “Exploring estuarine nutrient susceptibility,” Environ. Sci. Technol.43, 3474–3479 (2009).
[CrossRef] [PubMed]

Lubac, B.

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

Mahadevan, A.

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

Marchbanks, R. D.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
[CrossRef] [PubMed]

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

Maritorena, S.

Maximenko, N. A.

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

McLean, J. W.

Mishonov, A.

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, 1994).

Moum, J.

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

Moutin, T.

Oishi, T.

Pegau, W. S.

Perry, M.

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

Peterson, A. R.

Petzold, T.

R. Austin and T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Optical Engineering25, 253471–253471 (1986).
[CrossRef]

Petzold, T. H.

T. H. Petzold, “Volume scattering functions for selected ocean waters,” Technical report, U. of California San DiegoSIO Ref72, 1–79 (1972).

Phillips, D.

D. Phillips and B. Koerber, “A theoretical study of an airborne laser technique for determining sea water turbidity,” Aust. J. Phys.37, 75–90 (1984).
[CrossRef]

Piskozub, J.

Richardson, M.

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

Scavia, D.

D. Scavia and Y. Liu, “Exploring estuarine nutrient susceptibility,” Environ. Sci. Technol.43, 3474–3479 (2009).
[CrossRef] [PubMed]

Schmeltz, M.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

Shaw, J. A.

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

Siegel, D. A.

Smyth, W.

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

Spiers, G.

Sprintall, J.

S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
[CrossRef]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications Incorporated, 1974).

Sullivan, J. M.

Talley, L.

J. Holte and L. Talley, “A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation,” J Atmos. Ocean Tech.26, 1920–1939 (2009).
[CrossRef]

Tatarskii, V.

Teague, W.

Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
[CrossRef]

Trees, C.

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

Twardowski, M. S.

Voss, K. J.

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr.37, 501–509 (1992).
[CrossRef]

Walker, R. E.

R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt.38, 2384–2397 (1999).
[CrossRef]

R. E. Walker, Marine Light Field Statistics (A Wiley Interscience Publication, 1994), p. 660.

Weidemann, A.

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

Werdell, J.

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

Westberry, T. K.

Wilson, J.

Woiceshyn, P.

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

Yoshinari, H.

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

Zaneveld, J.

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

Zawada, D.

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

Appl. Opt. (9)

J. Churnside, V. Tatarskii, and J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt.37, 3105–3112 (1998).
[CrossRef]

R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt.38, 2384–2397 (1999).
[CrossRef]

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt.52, 786–794 (2013).
[CrossRef] [PubMed]

H. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt.21, 2996–3001 (1982).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41, 2705–2714 (2002).
[CrossRef] [PubMed]

B. Billard, “Remote sensing of scattering coefficient for airborne laser hydrography,” Appl. Opt.25, 2099–2108 (1986).
[CrossRef] [PubMed]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt.48, 6811–6819 (2009).
[CrossRef] [PubMed]

T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 deg,” Appl. Opt.29, 4658–4665 (1990).
[CrossRef] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt.40, 5503–5507 (2001).
[CrossRef]

Aust. J. Phys. (1)

D. Phillips and B. Koerber, “A theoretical study of an airborne laser technique for determining sea water turbidity,” Aust. J. Phys.37, 75–90 (1984).
[CrossRef]

Encyclopedia of Ocean Sciences (2)

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

J. Moum and W. Smyth, “Upper ocean mixing processes,” Encyclopedia of Ocean Sciences6, 3093–3100 (2001).
[CrossRef]

Environ. Sci. Technol. (1)

D. Scavia and Y. Liu, “Exploring estuarine nutrient susceptibility,” Environ. Sci. Technol.43, 3474–3479 (2009).
[CrossRef] [PubMed]

Eos, Transactions American Geophysical Union (1)

J. Acker and G. Leptoukh, “Online analysis enhances use of nasa earth science data,” Eos, Transactions American Geophysical Union88, 14 (2007).
[CrossRef]

High Latitude Optics (1)

V. I. Feigels and Y. I. Kopilevich, “Remote sensing of subsurface layers of turbid seawater with the help of an optical lidar system,” in “High Latitude Optics,” (International Society for Optics and Photonics, 1993), pp. 34–42.

ICES Journal of Marine Science: Journal du Conseil (1)

J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES Journal of Marine Science: Journal du Conseil66, 778–789 (2009).
[CrossRef]

Int. J. Remote Sens. (1)

D. Bogucki, M. Carr, W. Drennan, P. Woiceshyn, T. Hara, and M. Schmeltz, “Preliminary and novel estimates of co2 gas transfer using a satellite scatterometer during the 2001GasEx experiment,” Int. J. Remote Sens.31, 75–92 (2010).
[CrossRef]

International Ocean Color Group Software Report (1)

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (qaa v5),” International Ocean Color Group Software Report (2009).

IPRC Technical Note (1)

K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “Velocity data assessed from trajectories of argo floats at parking level and at the sea surface,” IPRC Technical Note4, 1–16 (2007).

J Atmos. Ocean Tech. (1)

J. Holte and L. Talley, “A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation,” J Atmos. Ocean Tech.26, 1920–1939 (2009).
[CrossRef]

J. Appl. Remote Sens. (1)

J. H. Churnside, R. D. Marchbanks, J. H. Lee, J. A. Shaw, A. Weidemann, and P. L. Donaghay, “Airborne lidar detection and characterization of internal waves in a shallow fjord,” J. Appl. Remote Sens.6, 063611–063611 (2012).
[CrossRef]

J. Geophys. Res. (1)

D. Zawada, J. Zaneveld, E. Boss, W. Gardner, M. Richardson, and A. Mishonov, “A comparison of hydrographically and optically derived mixed layer depths,” J. Geophys. Res.110, C11001 (2005).
[CrossRef]

J. Phys. Oceanogr. (1)

Z. Hallock, W. Teague, and E. Jarosz, “Subinertial slope-trapped waves in the northeastern gulf of mexico,” J. Phys. Oceanogr.39, 1475–1485 (2009).
[CrossRef]

Journal of Climate (1)

S. Dong, S. Gille, and J. Sprintall, “An assessment of the Southern Ocean mixed layer heat budget,” Journal of Climate20, 4425–4442 (2007).
[CrossRef]

Limnol. Oceanogr. (1)

K. J. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr.37, 501–509 (1992).
[CrossRef]

Opt. Express (2)

Optical Engineering (1)

R. Austin and T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Optical Engineering25, 253471–253471 (1986).
[CrossRef]

Reports of the International Ocean-Colour Coordinating Group (1)

Z. Lee, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (2006).

Science (1)

A. Mahadevan, E. DAsaro, C. Lee, and M. Perry, “Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms,” Science337, 54–58 (2012).
[CrossRef] [PubMed]

SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions (1)

S. Derada, S. Ladner, and R. Arnone, “Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance,” in “SPIE Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions,” 8532, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

SPIE, Ocean Sensing and Monitoring IV (1)

R. Arnone, S. Derada, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean lidars,” in “SPIE, Ocean Sensing and Monitoring IV”, 8372, (International Society for Optics and Photonics, 2012), doi:
[CrossRef]

Technical report, U. of California San Diego (1)

T. H. Petzold, “Volume scattering functions for selected ocean waters,” Technical report, U. of California San DiegoSIO Ref72, 1–79 (1972).

Other (4)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Dover Publications Incorporated, 1974).

R. E. Walker, Marine Light Field Statistics (A Wiley Interscience Publication, 1994), p. 660.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, 1994).

N. G. Jerlov, Marine Optics (Elsevier, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The truncated Argo float distribution such that if there were more than 12 floats within 3°×3° and within ten year period then the color remains unchanged.

Fig. 2
Fig. 2

The global mixed layer distribution based on Argo floats data.

Fig. 3
Fig. 3

(a) The twice-scattered signal entering the Lidar detector. (b) The single-scattered signal entering the Lidar detector. R - the receiver footprint.

Fig. 4
Fig. 4

The Lidar receiver footprint - R in the quasi-single scattering regime.

Fig. 5
Fig. 5

Top: Lidar penetration depth for the narrow receiver footprint- single scattering regime; Bottom: Lidar penetration depth for the wide receiver footprint- quasi-single scattering regime.

Fig. 6
Fig. 6

Fraction of Lidar penetration depth (FLPD). The FPLD ratio >1 indicates that Lidar penetrates through the entire local mixed layer. Top: single scattering Lidar; Bottom: quasi-single scattering Lidar.

Fig. 7
Fig. 7

Histograms for the maps in Fig. 2, Fig. 4, Fig. 5 and the Fig. 6. A- Histogram of the Lidar receiver radius R = 1/c. B-Mixed layer depth. C-Single scattering Lidar penetration depth. D-quasi-single scattering Lidar penetration depth. E- FPLD - Single scattering Lidar. F- FPLD - D-quasi-single scattering Lidar. The red line denotes FPLD of 1.

Fig. 8
Fig. 8

Results for the Northern GOM. A- the quasi-single scattering Lidar footprint size R. B- ML depth observed by Argo floats. C- FPLD distribution for the narrow footprint Lidar system. D- FPLD distribution for the wide footprint Lidar system.

Fig. 9
Fig. 9

Top: Histogram of Lidar maximum penetration depth distribution in terms W = αzmax optical depth. Bottom plot of W 1 + W and 1 2 1 1 + W of the Eq. (10)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S ( z ) = B lidar β ( z , π ) exp ( 2 τ ( z ) ) z 2
S ( z ) = B lidar β ( π ) exp ( 2 α z ) z 2
S ( z ) = B lidar β ( π ) exp ( 2 α z ) z 2 = B lidar β ( π ) β 0 ( π ) β 0 ( π ) exp ( 2 α z ) z 2 = = C lidar β ( π ) β 0 ( π ) exp ( 2 α z ) z 2
1 = 6.8 10 8 b b p exp ( 2 α z max ) z max 2
x = W ( x ) exp [ W ( x ) ]
W = α z max
x = A α b b p 1 / 2
d W ( x ) W ( x ) = 1 1 + W ( x ) d x x
d x x = 1 x [ x α d α + x b b p d b b p ] = d α α + 1 2 b b p b b p
d W W = d α α + d ( z max ) z max .
d ( z max ) z max W 1 + W | d α α | + 1 2 1 1 + W | d b b p b b p | .

Metrics