Abstract

We tackle the problem of information recovery and imaging through scattering microfluidic chips by means of digital holography (DH). In many cases the chip can become opalescent due to residual deposits settling down the inner channel faces, biofilm formation, scattering particle uptake by the channel cladding or its damaging by corrosive substances, or even by condensing effect on the exterior channels walls. In these cases white-light imaging is severely degraded and no information is obtainable at all about the flowing samples. Here we investigate the problem of counting and estimating velocity of cells flowing inside a scattering chip. Moreover we propose and test a method based on the recording of multiple digital holograms to retrieve improved phase-contrast images despite the strong scattering effect. This method helps, thanks to DH, to recover information which, otherwise, would be completely lost.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Monolithic integration of microfluidic channels and semiconductor lasers

Simon J. Cran-McGreehin, Kishan Dholakia, and Thomas F. Krauss
Opt. Express 14(17) 7723-7729 (2006)

Optofluidic microscope with 3D spatial resolution

Asger Laurberg Vig, Rodolphe Marie, Eric Jensen, and Anders Kristensen
Opt. Express 18(5) 4158-4169 (2010)

Multi-angle lensless digital holography for depth resolved imaging on a chip

Ting-Wei Su, Serhan O. Isikman, Waheb Bishara, Derek Tseng, Anthony Erlinger, and Aydogan Ozcan
Opt. Express 18(9) 9690-9711 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  2. D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
    [Crossref]
  3. P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
    [Crossref] [PubMed]
  4. J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
    [Crossref] [PubMed]
  5. Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, and J. Y. Qu, “Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging,” Opt. Lett. 36(12), 2236–2238 (2011).
    [Crossref] [PubMed]
  6. B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
    [Crossref] [PubMed]
  7. R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
    [Crossref]
  8. C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87(114104), 1–3 (2005).
  9. C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids 10, 181–193 (1991).
  10. J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
    [Crossref]
  11. R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
    [Crossref] [PubMed]
  12. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
    [Crossref] [PubMed]
  13. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [Crossref] [PubMed]
  14. A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8(1), 98–106 (2007).
    [Crossref] [PubMed]
  15. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
    [Crossref] [PubMed]
  16. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
    [Crossref] [PubMed]
  17. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
    [Crossref] [PubMed]
  18. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
    [Crossref] [PubMed]
  19. G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
    [Crossref] [PubMed]
  20. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
    [Crossref] [PubMed]
  21. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [Crossref] [PubMed]
  22. A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
    [Crossref] [PubMed]
  23. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
    [Crossref] [PubMed]
  24. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett. 35(10), 1548–1550 (2010).
    [Crossref] [PubMed]
  25. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15(16), 10253–10265 (2007).
    [Crossref] [PubMed]
  26. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
    [Crossref] [PubMed]
  27. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
    [Crossref] [PubMed]
  28. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
    [Crossref] [PubMed]
  29. V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
    [Crossref]
  30. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  31. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [Crossref] [PubMed]
  32. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38(34), 7085–7094 (1999).
    [Crossref] [PubMed]
  33. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
    [Crossref] [PubMed]
  34. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [Crossref] [PubMed]
  35. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [Crossref] [PubMed]
  36. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref] [PubMed]
  37. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
    [Crossref] [PubMed]
  38. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
    [Crossref] [PubMed]
  39. I. Alexeenko, J. F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
    [Crossref] [PubMed]
  40. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  41. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  42. Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
    [Crossref]
  43. J. Y. Yoon, J. H. Han, B. Heinze, and L. J. Lucas, “Microfluidic device detection of waterborne pathogens through static light scattering of latex immunoagglutination using proximity optical fibers,” Proc. Spie 6556, 65560M (2007).
    [Crossref]
  44. J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
    [Crossref] [PubMed]
  45. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
    [Crossref] [PubMed]
  46. D. de Beer and M. Kuhl, “Interfacial Microbial Mats and Biofilms,” The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford University, 2001), pp. 374–394.
  47. Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
    [Crossref] [PubMed]
  48. M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
    [Crossref] [PubMed]
  49. S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
    [Crossref] [PubMed]
  50. J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
    [Crossref]
  51. F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
    [Crossref]
  52. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
    [Crossref] [PubMed]
  53. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25(7), 1744–1761 (2008).
    [Crossref] [PubMed]
  54. T. Kreis, “Handbook of Holographic Interferometry: Optical and Digital Methods,” 1st ed. (Wiley-VCH, Germany, 2004).
  55. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [Crossref] [PubMed]
  56. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
    [Crossref] [PubMed]
  57. J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
    [Crossref]

2013 (4)

2012 (9)

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
[Crossref]

2011 (4)

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
[Crossref] [PubMed]

Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, and J. Y. Qu, “Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging,” Opt. Lett. 36(12), 2236–2238 (2011).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

2010 (7)

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref] [PubMed]

Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett. 35(10), 1548–1550 (2010).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

2008 (10)

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25(7), 1744–1761 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (5)

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

2005 (3)

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87(114104), 1–3 (2005).

2004 (3)

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[Crossref]

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

2003 (2)

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

2002 (1)

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

1999 (1)

1997 (1)

J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
[Crossref]

1994 (1)

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

1991 (1)

C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids 10, 181–193 (1991).

Alexeenko, I.

Badizadegan, K.

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

Barada, D.

Barysheva, O.

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Bianco, V.

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Cai, J.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

Callens, N.

Castro, A.

Centurion, M.

Chiu, D. T.

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

Chung, B. G.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Chung, S.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Coppola, G.

Costerton, J. W.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Dabiri, D.

J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
[Crossref]

Dasari, R. R.

Davies, D. G.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

de Camprieu, L.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

De Nicola, S.

Demirci, U.

A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8(1), 98–106 (2007).
[Crossref] [PubMed]

Depeursinge, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Dewaele, P.

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Ding, H.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Dubois, F.

Dufva, M.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Emnéus, J.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[Crossref]

Everitt, H. O.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

Ferraro, P.

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

Finizio, A.

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
[Crossref]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

Flanagan, L. A.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Frauel, Y.

Fujita, H.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

Ganesan, K.

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

Garcia-Sucerquia, J.

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Georges, M. P.

Gertrude, A.

Geschke, O.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Gharib, M.

J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
[Crossref]

C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids 10, 181–193 (1991).

Greenbaum, A.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

Gregory, D. A.

Grilli, S.

Groisman, A.

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87(114104), 1–3 (2005).

Han, S.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Hegde, M.

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Heimbeck, M. S.

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Hong, S. H.

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Houdellier, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Hoyos, M.

Hüe, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Hÿtch, M.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Iannone, M.

Iida, K.

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Ikeda, T.

Imai, Y.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Ishikawa, T.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Isikman, S. O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Javidi, B.

Jayaraman, A.

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Jeon, N. L.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Jiang, L.

Joannes, L.

Jourdain, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Jurkevich, L.

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Kiire, T.

Kikuchi, Y.

Kim, H. S.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Kim, J.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Kim, M. K.

Kon, T.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Kühn, J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Kurowski, P.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Lee, A. P.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Lee, J. S.

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Lee, J. Y.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Lee, L. M.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Lee, S. A.

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

Legros, J. C.

Leval, J.

Li, D.

Li, P. C. H.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

Lima, R.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Locatelli, M.

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Lue, N.

Magistretti, P. J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Magro, C.

Marquet, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Memmolo, P.

Meucci, R.

Miccio, L.

Molin, S.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Monnom, O.

Monroy, F.

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

Monuki, E. S.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Moratal, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Näsänen, R.

Naughton, T. J.

Netti, P. A.

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Nielsen, M. W.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Nishiura, M.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Oh, J. E.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Oosterlinck, A.

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Osten, W.

Ouyang, L.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Ozcan, A.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref] [PubMed]

A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8(1), 98–106 (2007).
[Crossref] [PubMed]

Oztoprak, C.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Park, H. D.

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

Paturzo, M.

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
[Crossref] [PubMed]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

Pavillon, N.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Pedrini, G.

Pelagotti, A.

Piao, Z. Y.

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Picart, P.

Pierattini, G.

Poggi, P.

Popescu, G.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

Prieto, D. V.

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Psaltis, D.

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Pu, Y.

Pugliese, E.

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

Qu, J. Y.

Ramírez, J. A. H.

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Rathod, P. K.

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

Rhee, S. W.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Rincon, O.

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Sangar, M.

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

Sauer, K.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

Schwartz, P. H.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

Sencan, I.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Shelby, J. P.

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

Sikora, U.

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Simonnet, C.

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87(114104), 1–3 (2005).

Skolimowski, M.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Snoeck, E.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Spozmai, P.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Sternberg, C.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Stoodley, P.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

Su, T. W.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

Sutoh, K.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Sze, C. C.

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Taboryski, R.

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

Takeda, M.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Takeuchi, S.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Tanaka, S.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Thizy, C.

Torres, Y. M.

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

Tseng, D.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Tsubota, K.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vandenrijt, J. F.

Ventre, M.

Vollheim, B.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Wada, S.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Wambacq, P.

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Wang, D.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Wang, X.

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Wang, Z.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Westerweel, J.

J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
[Crossref]

White, J.

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Willert, C. E.

C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids 10, 181–193 (1991).

Wood, T. K.

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Yaglidere, O.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

Yamaguchi, T.

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Yang, C.

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Yang, D.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Yang, S.

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

Yao, S.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

Yatagai, T.

Yokokawa, R.

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Yoshida, S.

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Yourassowsky, C.

Zeng, Y.

Zhao, J.

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Zheng, G.

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

Zheng, W.

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[Crossref]

Annu. Rev. Microbiol. (1)

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol. 56(1), 187–209 (2002).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (1)

Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol. 72(2), 1613–1622 (2006).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett. 87(114104), 1–3 (2005).

Biomed. Microdevices (1)

R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices 10(2), 153–167 (2008).
[Crossref] [PubMed]

Exp. Fluids (2)

C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids 10, 181–193 (1991).

J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids 23(1), 20–28 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (12)

M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip 10(16), 2162–2169 (2010).
[Crossref] [PubMed]

J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip 13(10), 1846–1849 (2013).
[Crossref] [PubMed]

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip 5(4), 401–406 (2005).
[Crossref] [PubMed]

P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip 4(3), 174–180 (2004).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010).
[Crossref] [PubMed]

A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8(1), 98–106 (2007).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip 12(7), 1242–1245 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

Methods Cell Biol. (1)

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref] [PubMed]

Nano Lett. (1)

R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett. 4(11), 2265–2270 (2004).
[Crossref]

Nat. Commun. (1)

S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun. 3(613), 613 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Nature (3)

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun. 281(13), 3454–3460 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Opt. Photonics News (1)

V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News 23(12), 33 (2012).
[Crossref]

Optik (Stuttg.) (1)

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Phys. Rev. Lett. (1)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 100(25), 14618–14622 (2003).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE 8418, 841816, 841816-6 (2012).
[Crossref]

Remote Sens. Rev. (1)

J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev. 8(4), 313–340 (1994).
[Crossref]

Other (3)

T. Kreis, “Handbook of Holographic Interferometry: Optical and Digital Methods,” 1st ed. (Wiley-VCH, Germany, 2004).

D. de Beer and M. Kuhl, “Interfacial Microbial Mats and Biofilms,” The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford University, 2001), pp. 374–394.

J. Y. Yoon, J. H. Han, B. Heinze, and L. J. Lucas, “Microfluidic device detection of waterborne pathogens through static light scattering of latex immunoagglutination using proximity optical fibers,” Proc. Spie 6556, 65560M (2007).
[Crossref]

Supplementary Material (1)

» Media 1: MOV (231 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Imaging through scattering microfluidics. (a) White-light image of a microfluidic chip with four channels. A salt deposit is settled only in the second channel (red dashed box), with opacity increasing from left to right. (b) White-light view of a different portion of the chip, with the maximum layer thickness. (c-d) Only the left part of a test target is placed behind a scattering channel imaged respectively by (c) white-light microscopy and (d) coherent laser microscopy at λ = 632,8μm. (e) Coherent laser microscopy of the target in absence of the scattering layer. (f-g) White-light images of the salt deposit inside the chip obtained with (f) 20x and (g) 50x magnification.

Fig. 2
Fig. 2

Sketch of the experimental set-up. On the right side of the image a phase contrast map is shown of the cell flowing through the scattering channel along the x nominal direction.

Fig. 3
Fig. 3

Phase-contrast mapping of a sample cell flowing into a clear microfluidic channel. In the inset the top view is shown.

Fig. 4
Fig. 4

Derivative of the average phase-contrast vs. time. An example of mean velocity estimation employing four gates is shown. On the right the scattering channel is sketched showing in green, for each plot, the window where the average is performed.

Fig. 5
Fig. 5

Holographic reconstructions of a sample cell flowing into a scattering channel. (a) (Media 1) SL phase-contrast map. (b) ML phase-contrast map.

Fig. 6
Fig. 6

Phase-contrast mapping of a sample cell flowing into a scattering microfluidic channel. A side-view is shown along the columns of the image at fixed row. (a) SL. (b) ML. (c) SL post-filtered. (d) ML post-filtered.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I( u,v,t )= | i=1 M | C h i ( u,v,t ) || O i ( u,v,t ) |exp{ j[ O i ( u,v,t )+C h i ( u,v,t ) ] } | 2 + + N g ( u,v,t )+ N ch ( u,v )= I s ( u,v,t )+ N g ( u,v,t )+ N ch ( u,v ) .
C SL ( x,y,t )=Fr{ I( u,v,t ) }Fr{ I S ( u,v,t ) }+Fr{ N ch ( u,v ) },
Δ ^ =[Δ x ^ ,Δ y ^ ]= argmax Δx,Δy { ρ( Δx,Δy ) }= = argmax Δx,Δy { E C ˜ MASTER ( x,y,t= T 0 )[ C ˜ SLAVE ( x,y,t )δ( xΔx,yΔy ) ] E C ˜ MASTER ( x,y,t= T 0 ) 2 E [ C ˜ SLAVE ( x,y,t )δ( xΔx,yΔy ) ] 2 },
C ˜ =| C SL || Fr{ N ch } || Fr{ I S } |
A ML ( x,y )= 1 N n=1 N [ C ˜ n ( x,y )δ( x-Δ x ^ n ,y-Δ y ^ n ) ] Φ ML ( x,y )= 1 N n=1 N [ Φ ˜ n ( x,y )δ( x-Δ x ^ n ,y-Δ y ^ n ) ]
v ¯ x = 1 N G ij D ij Δ T ij ,

Metrics