Abstract

Three-dimensional structured illumination microscopy (3D-SIM) is a wide-field technique that can provide doubled resolution and improved image contrast. In this work, we demonstrate a simple approach to 3D-SIM − using three-beam interference with circular polarization to generate the pattern of structured illumination, so that the modulation contrast is routinely maintained at all orientations without a complicated polarization rotator or mechanical motion. We derive the resultant intensity distribution of the interference pattern to confirm the modulation contrast independent of orientation, and compare the result with those using interfering beams of linear polarization. To evaluate the influence of the modulation contrast on imaging, we compare the simulated SIM images of 100-nm beads. Experimental results are presented to confirm the simulations. Our approach requires merely a λ/4-wave plate to alter the interfering beams from linear to circular polarization. This simplicity together with the use of a spatial light modulator to control the interference pattern facilitates the implementation of a 3D-SIM system and should broaden its application.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
    [CrossRef]
  2. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
    [CrossRef]
  4. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
    [CrossRef] [PubMed]
  5. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A.97(13), 7232–7236 (2000).
    [CrossRef] [PubMed]
  6. J. T. Frohn, H. F. Knapp, and A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett.26(11), 828–830 (2001).
    [CrossRef] [PubMed]
  7. R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron34(6-7), 283–291 (2003).
    [CrossRef] [PubMed]
  8. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
    [CrossRef] [PubMed]
  9. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
    [CrossRef] [PubMed]
  10. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
    [CrossRef] [PubMed]
  11. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  12. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  13. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  14. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  15. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
    [CrossRef] [PubMed]
  16. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
    [CrossRef] [PubMed]
  17. R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
    [CrossRef] [PubMed]
  18. E. Chung, D. Kim, and P. T. So, “Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett.31(7), 945–947 (2006).
    [CrossRef] [PubMed]
  19. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett.33(14), 1629–1631 (2008).
    [CrossRef] [PubMed]
  20. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
    [CrossRef] [PubMed]
  21. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  22. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A19(8), 1599–1609 (2002).
    [CrossRef] [PubMed]
  23. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
    [CrossRef] [PubMed]
  24. B. J. Chang, S. H. Lin, L. J. Chou, and S. Y. Chiang, “Subdiffraction scattered light imaging of gold nanoparticles using structured illumination,” Opt. Lett.36(24), 4773–4775 (2011).
    [CrossRef] [PubMed]
  25. S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express3(8), 1841–1854 (2012).
    [CrossRef] [PubMed]
  26. J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Opt. Express21(1), 112–121 (2013).
    [CrossRef] [PubMed]
  27. B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express17(17), 14710–14721 (2009).
    [CrossRef] [PubMed]
  28. J. J. M. Braat, http://www.nijboerzernike.nl/ .

2013 (1)

2012 (3)

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express3(8), 1841–1854 (2012).
[CrossRef] [PubMed]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

B. J. Chang, S. H. Lin, L. J. Chou, and S. Y. Chiang, “Subdiffraction scattered light imaging of gold nanoparticles using structured illumination,” Opt. Lett.36(24), 4773–4775 (2011).
[CrossRef] [PubMed]

2009 (3)

B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express17(17), 14710–14721 (2009).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

2008 (3)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett.33(14), 1629–1631 (2008).
[CrossRef] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

2006 (4)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

E. Chung, D. Kim, and P. T. So, “Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett.31(7), 945–947 (2006).
[CrossRef] [PubMed]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

2003 (1)

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron34(6-7), 283–291 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (4)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A.97(13), 7232–7236 (2000).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Beck, M.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Chang, B. J.

Chang, Y. C.

Chen, J.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Chiang, S. Y.

Chou, L. J.

Chowdhury, S.

Chung, E.

Cremer, C.

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A19(8), 1599–1609 (2002).
[CrossRef] [PubMed]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Davidson, M. W.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dhalla, A. H.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Fiolka, R.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett.33(14), 1629–1631 (2008).
[CrossRef] [PubMed]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett.26(11), 828–830 (2001).
[CrossRef] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A.97(13), 7232–7236 (2000).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Heintzmann, R.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron34(6-7), 283–291 (2003).
[CrossRef] [PubMed]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A19(8), 1599–1609 (2002).
[CrossRef] [PubMed]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Hirvonen, L. M.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Isaac, B.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

Izatt, J.

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Johansson, G. A.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Jovin, T. M.

Kamps-Hughes, N.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Kim, D.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett.26(11), 828–830 (2001).
[CrossRef] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A.97(13), 7232–7236 (2000).
[CrossRef] [PubMed]

Kner, P.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Lai, X.

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Lin, S. H.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lv, X.

Macklin, J. J.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Mandula, O.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Rego, E. H.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Shao, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

So, P. T.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stemmer, A.

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Uzawa, S.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Wicker, K.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Winoto, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Xu, Y.

Zeng, S.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (3)

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J.94(12), 4971–4983 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Micron (1)

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron34(6-7), 283–291 (2003).
[CrossRef] [PubMed]

Nat. Methods (3)

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Nature (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (5)

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A.97(13), 7232–7236 (2000).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Other (1)

J. J. M. Braat, http://www.nijboerzernike.nl/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Side (xz plane) and (b) top (xy plane) views of propagation and polarization vectors of three interfering beams to generate interference patterns in the sample focal plane at θ = 0°, 45° and 90° with interaction angle β = 44°; black arrows represent the propagation vectors, and red arrows and circles represent the polarization states for the fixed linear polarization case; the red circle with a central dot or a cross indicates that the polarization vector is out of the plane in a forward or backward direction.

Fig. 2
Fig. 2

Modulation contrasts for interferences of the (a) zero- and first-order beams and (b) two first-order beams in orientations 0°−180° for the cases of fixed linear polarization (LP), circular polarization (CP) and maintained SLP; the interaction angle β for the calculations is 44°.

Fig. 3
Fig. 3

(a) Optical setup to generate three diffracted beams of circular polarization for interference in a 3D-SIM system. (b) Portions of 0°, 45°, and 60° SLM patterns and (c) corresponding interference patterns of nearly the same lateral period − 293 nm (0°), 290 nm (45°) and 295 nm (60°); the black pixels indicate no phase retardation and the white pixels indicate a phase retardation 7π/8 of the liquid crystal; the periodicity for each SLM pattern is indicated by coloring one pixel in each unit cell red.

Fig. 4
Fig. 4

Simulations of (a) lateral modulations at the sample focal plane (upper) at θ = 0°, 45°, 60° and 90°, and the corresponding axial modulations (bottom) for fixed linear polarization and circular polarization, and (b) corresponding lateral and axial profiles, indicated in yellow lines in (a). The axial modulation for each orientation is projected on its oriented plane, such as plane x’z at θ = 45° to simplify the view; the parameters for calculations are I0/I1 = 0.75 and β = 44°.

Fig. 5
Fig. 5

Simulations of reconstructed component images of 100-nm beads at the focal plane at θ = (a) 0°, (b) 45°, (c) 60° and (d) 90° for fixed linear polarization with the raw images at the ratio of signal to noise about 10; each 8-bit image is rescaled with the maximal signal to 255 for display.

Fig. 6
Fig. 6

Simulations of lateral and axial projections of reconstructed images of 100-nm beads from three orientations − 0°, 60° and 120° for (a) fixed linear polarization, (b) circular polarization and (c) maintained s-linear polarization with raw images at the ratio of signal to noise about 10; each image is 8-bit with the maximal signal rescaled to 255 for display.

Fig. 7
Fig. 7

Reconstructed component images of 100-nm fluorescent beads at the focal plane at 0°, 60° and 120° with beams of (a) fixed s-linear polarization on the x axis and (b) circular polarization; the ratio of signal to noise in the measured raw image is about 250.

Fig. 8
Fig. 8

(a) Lateral and axial projections of the wide-field (WF) and 3D-SIM images of 100-nm fluorescent beads and (b) corresponding profiles of an individual bead marked in lines; the solid curve corresponds to a Gaussian fit.

Fig. 9
Fig. 9

Lateral (xy) and yz views of (a) wide-field (WF) and (b) 3D-SIM images of Alexa-488-labeled microtubules inside a HeLa cell; the xy view is at a selected z position; the three dash lines indicate the positions for yz views. The image size is about 16.4 x 16.4 x 5 μm3 in the x, y and z directions.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E j = P j f j e i k j r ,
{ k 1 =cosθsinβ x ^ +sinθsinβ y ^ +cosβ z ^ k 0 = z ^ k 1 =cosθsinβ x ^ sinθsinβ y ^ +cosβ z ^ .
P 0 = 1 2 ( 2 1+ e 2 y ^ i 2 e 2 1+ e 2 x ^ ),
P 1 = 1 2 [ 2 1+ e 2 ( x r x ^ + y r y ^ + z r z ^ )+i 2 e 2 1+ e 2 ( x i x ^ + y i y ^ + z i z ^ ) ].
P 1 = 1 2 { 2 1+ e 2 [ cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ sinθsinβ z ^ ) ] i 2 e 2 1+ e 2 [ ( cos 2 θcosβ+ sin 2 θ) x ^ +cosθsinθ(cosβ1) y ^ cosθsinβ z ^ ) ] }.
P 1 = 1 2 { 2 1+ e 2 [ cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ +sinθsinβ z ^ ) ] i 2 e 2 1+ e 2 [ ( cos 2 θcosβ+ sin 2 θ) x ^ +cosθsinθ(cosβ1) y ^ +cosθsinβ z ^ ) ] }.
{ P 1 =cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ sinθsinβ z ^ P 0 = y ^ P 1 =cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ +sinθsinβ z ^ .
{ P 1 = 1 2 [ cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ sinθsinβ z ^ ) ] i 2 [ ( cos 2 θcosβ+ sin 2 θ) x ^ +cosθsinθ(cosβ1) y ^ cosθsinβ z ^ ) ] P 0 = 1 2 ( y ^ i x ^ ) P 1 = 1 2 [ cosθsinθ(cosβ1) x ^ +( sin 2 θcosβ+ cos 2 θ) y ^ +sinθsinβ z ^ ) ] i 2 [ ( cos 2 θcosβ+ sin 2 θ) x ^ +cosθsinθ(cosβ1) y ^ +cosθsinβ z ^ ) ] .
I( r )=( E 0 + E 1 + E 1 ) ( E 0 + E 1 + E 1 ) .
I [ r (x,y,z),θ,β ] E(e) = I 0 +2 I 1 + 1 2 [ ( 2 1+ e 2 )( cos 2 β 2 +cos2θ sin 2 β 2 ) +( 2 e 2 1+ e 2 )( cos 2 β 2 cos2θ sin 2 β 2 ) ]4 I 0 I 1 cos( kxcosθsinβ +kysinθsinβ )cos[ kz( 1cosβ ) ] + 1 2 [ ( 2 1+ e 2 )( cos 2 β+cos2θ sin 2 β ) +( 2 e 2 1+ e 2 )( cos 2 βcos2θ sin 2 β ) ]2 I 1 cos( 2kxcosθsinβ +2kysinθsinβ ),
I [ r(x,y,z),θ,β ] s = I 0 +2 I 1 +( cos 2 θ+ sin 2 θcosβ)4 I 0 I 1 cos[ ksinβ(xcosθ+ysinθ) ]cos[ kz( 1cosβ ) ] +( cos 2 θ+ sin 2 θcos2β)2 I 1 cos[ 2ksinβ(xcosθ+ysinθ) ],
I [ r(x,y,z),θ,β ] c = I 0 +2 I 1 +( cos 2 β 2 )4 I 0 I 1 cos[ ksinβ(xcosθ+ysinθ) ]cos[ kz( 1cosβ ) ] +( cos 2 β)2 I 1 cos[ 2ksinβ(xcosθ+ysinθ) ].
D(r)=(S(r)I(r))P(r),
D(k)=(S(k)I(k))OTF(k),

Metrics