Abstract

The interference between two spectral lines of the frequency comb of a fiber femtosecond laser is used to generate millimeter-wave and terahertz tones. The two lines are selected by stimulated Brillouin scattering (SBS) amplification. All other modes are strongly rejected based on polarization discrimination, using the polarization-pulling effect that is associated with SBS. The inherent high spectral quality of a femtosecond fiber laser comb allows generation of millimeter- and terahertz waves with linewidths below 1 Hz, and a phase noise of −105 dBc/Hz at 10 kHz offset. The generation, free-space transmission and detection of continuous waves at 1 THz are demonstrated as well. Lastly, the generated millimeter-wave carriers are modulated by 40 Gbit/s data. The entire system consists of a fiber laser and standard equipment of optical telecommunications. Besides metrology, spectroscopy and astronomy, the method can be utilized for the emergent field of wireless millimeter-wave and THz-communications at ultra-high data rates.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
    [CrossRef]
  3. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz,” Opt. Express15, 12060–12067 (2007).
    [CrossRef] [PubMed]
  4. M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
    [CrossRef] [PubMed]
  5. I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
    [CrossRef]
  6. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
    [CrossRef]
  7. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn.50, 910–928 (2002).
    [CrossRef]
  8. J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
    [CrossRef]
  9. J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
    [CrossRef]
  10. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
    [CrossRef]
  11. H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
    [CrossRef] [PubMed]
  12. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
    [CrossRef]
  13. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
    [CrossRef]
  14. S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
    [CrossRef]
  15. A. Barkan, F. Tittel, D. Mittleman, R. Dengler, P. Siegel, G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, A. Davies, and D. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett.29, 575–577 (2004).
    [CrossRef] [PubMed]
  16. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
    [CrossRef]
  17. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett.30, 3231–3233 (2005).
    [CrossRef] [PubMed]
  18. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
    [CrossRef] [PubMed]
  19. T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
    [CrossRef]
  20. T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
    [CrossRef] [PubMed]
  21. F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
    [CrossRef]
  22. A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
    [CrossRef]
  23. T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
    [CrossRef]
  24. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
    [CrossRef]
  25. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
    [CrossRef]
  26. T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
    [CrossRef]
  27. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
    [CrossRef]
  28. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers/Springer, 2004).
  29. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
    [CrossRef]
  30. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  31. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  32. E. D. Black, “An Introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
    [CrossRef]
  33. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.
  34. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
    [CrossRef]
  35. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” El. Lett.41, 1234–1235 (2005).
    [CrossRef]
  36. S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.
  37. R. W. Boyd, Nonlinear Optics (Academic Press, 1999).
  38. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
    [CrossRef]
  39. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
    [CrossRef] [PubMed]
  40. S. Preussler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett.37, 4122–4124 (2012).
    [CrossRef] [PubMed]
  41. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994).
    [CrossRef]
  42. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008).
    [CrossRef] [PubMed]
  43. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express19, 21945–21955 (2011).
    [CrossRef] [PubMed]
  44. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012).
    [CrossRef] [PubMed]
  45. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
    [CrossRef]
  46. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
    [CrossRef]
  47. H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
    [CrossRef]

2012 (5)

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012).
[CrossRef] [PubMed]

S. Preussler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett.37, 4122–4124 (2012).
[CrossRef] [PubMed]

2011 (9)

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express19, 21945–21955 (2011).
[CrossRef] [PubMed]

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
[CrossRef]

2010 (1)

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

2009 (1)

2008 (2)

A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008).
[CrossRef] [PubMed]

M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
[CrossRef]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

2005 (5)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” El. Lett.41, 1234–1235 (2005).
[CrossRef]

H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
[CrossRef] [PubMed]

Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett.30, 3231–3233 (2005).
[CrossRef] [PubMed]

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

2004 (3)

A. Barkan, F. Tittel, D. Mittleman, R. Dengler, P. Siegel, G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, A. Davies, and D. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett.29, 575–577 (2004).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

2003 (2)

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn.50, 910–928 (2002).
[CrossRef]

2001 (2)

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

E. D. Black, “An Introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

2000 (2)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

1999 (1)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

1995 (2)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994).
[CrossRef]

Ajili, L.

Alton, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Ammann, M. J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

Antes, J.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Arai, K.

Araki, T.

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Barbieri, S.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Barkan, A.

Bastiaans, G. J.

Beere, H.

Beere, H. E.

H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
[CrossRef] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Bieler, M.

H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
[CrossRef]

Black, E. D.

E. D. Black, “An Introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

Bocquet, R.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 1999).

Bratschitsch, R.

Braun, R. P.

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

Bucksbaum, P. H.

M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).

Callebaut, H.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Cámara Mayorga, I.

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

Chen, J.

Chen, Y.

Cuisset, A.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers/Springer, 2004).

Davies, A.

De Lucia, F. C.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Demers, J. R.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Dengler, R.

Deninger, A.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

di Natale, W. F.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Diebold, S.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Droiun, B. J.

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Eliet, S.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

Everitt, H. O.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Eyal, A.

Faist, J.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Ferrio, K. B.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Fowler, J.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Fukushima, S.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

Furuta, T.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Fuser, H.

H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Goyette, T. M.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Griebel, M.

Grigat, M.

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

Guenther, B. D.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

Guinet, M.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

Güsten, R.

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hannover, D.

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

Hindle, F.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

Hirata, A.

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

Hu, Q.

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Hübers, H. W.

Inaba, H.

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

Ishibashi, T.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Ito, H.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Iwamoto, Y.

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

Jamshidi, K.

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

Judaschke, R.

H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
[CrossRef]

Junker, M.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
[CrossRef]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
[CrossRef]

Kallfass, I.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Kawamoto, K.

Klein, T.

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

Kleine-Ostmann, T.

Klinger, J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Kodama, S.

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Köhler, R.

Kumar, S.

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Kurz, F.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Lauterbach, K.-U.

T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
[CrossRef]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

Leinz, C.

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

Leuther, A.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Linfield, E.

Linfield, E. H.

H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
[CrossRef] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Lopez-Diaz, D.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Lours, M.

Lyszczarz, T. M.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

Maestrini, A.

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Mahler, L.

Massler, H.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

McMahon, O. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

Mehdi, I.

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Minoshima, K.

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

Mittleman, D.

Mouret, G.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

Muramoto, Y.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

Nagatsuma, T.

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Nichols, K. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Okamoto, K.

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Pavlov, S. G.

Pearson, J. C.

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Peer, A.

M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
[CrossRef] [PubMed]

Preussler, S.

Preußler, S.

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

Preussler, S.

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

Preußler, S.

S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.

Quraishi, Q.

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

Reno, J. L.

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Ritchie, D.

Ritchie, D. A.

H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
[CrossRef] [PubMed]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

Roggenbuck, A.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Rovera, D.

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Sartorius, B.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Scalari, G.

Schindler, S.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Schlak, M.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Schmitz, A.

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

Schmuttenmaer, C. A.

M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).

Schneider, T.

S. Preussler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett.37, 4122–4124 (2012).
[CrossRef] [PubMed]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012).
[CrossRef] [PubMed]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
[CrossRef]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006).
[CrossRef]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” El. Lett.41, 1234–1235 (2005).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
[CrossRef]

S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Schwarzbacher, A. T.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

Seeds, A. J.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

Semenov, A. D.

Sherwin, M. S.

M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).

Shimizu, N.

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

Siegel, P.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn.50, 910–928 (2002).
[CrossRef]

Silva, C. F. C.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

Slivken, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Stanze, D.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

Stowe, M. C.

M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
[CrossRef] [PubMed]

Takahashi, H.

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

Tessmann, A.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

Thevenaz, L.

Tittel, F.

Togo, H.

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

Tredicucci, A.

Treff, S.

S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Tur, M.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

Ward, J.

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Wiatrek, A.

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012).
[CrossRef] [PubMed]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

Williams, B. S.

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Wise, A.

Yang, C.

Yasui, T.

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

Ye, J.

M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers/Springer, 2004).

Zadok, A.

Zhang, X.-C.

Zhao, H.

Zilka, E.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Am. J. Phys. (1)

E. D. Black, “An Introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

Appl. Phys. B (1)

F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995).
[CrossRef]

H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012).
[CrossRef]

Appl. Phys. Lett., (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995).
[CrossRef]

El. Lett. (2)

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” El. Lett.41, 1234–1235 (2005).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004).
[CrossRef]

IEEE J. Quant. Electron. (1)

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Techn. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn.50, 910–928 (2002).
[CrossRef]

IEEE Trans. on Microwave Theory and Techniques (1)

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006).
[CrossRef]

IEEE Trans. THz Science and Technol. (3)

I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012).
[CrossRef]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012).
[CrossRef]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011).
[CrossRef]

IEICE Trans. Electron. (1)

A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005).
[CrossRef]

J. Appl. Phys. (1)

T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011).
[CrossRef]

J. Lightw. Technol. (2)

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006).
[CrossRef]

J. Lightwave Technol. (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (8)

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz,” Opt. Express15, 12060–12067 (2007).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008).
[CrossRef] [PubMed]

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009).
[CrossRef] [PubMed]

T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011).
[CrossRef] [PubMed]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011).
[CrossRef] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express19, 21945–21955 (2011).
[CrossRef] [PubMed]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012).
[CrossRef] [PubMed]

H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (4)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef] [PubMed]

M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instruments (1)

J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Other (5)

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers/Springer, 2004).

M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.

S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.

R. W. Boyd, Nonlinear Optics (Academic Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrum of the used frequency comb measured with a conventional OSA. The ps-laser generates pulses with a repetition rate of 75.4 MHz. These pulses are spectrally broadened in a nonlinear fiber and can afterwards be compressed to fs-pulses. Here this feature is not required. The inset shows a 1 GHz wide part of the spectrum measured with a high resolution OSA [38].

Fig. 2
Fig. 2

Experimental setup. MLL: mode-locked laser, PC: polarization controller, PD: photo diode, PDH: Pound-Drever-Hall module, LD: distributed feedback laser diode, EDFA: erbium-doped fiber amplifier, PBS: polarization beam splitter, C: circulator, Det: measurement components including optical and electrical spectrum analyzer, TIA: transimpedance amplifier. The red lines correspond to optical and black lines to electrical links. The dashed box shows the setup for the modulation of the wave.

Fig. 3
Fig. 3

Optical spectrum of two amplified comb modes with SBS (a) and with SBS supported by polarization pulling (b). The superposition of the two modes in an appropriate photo mixer would produce a signal with a frequency of around 1 THz (999.89 GHz). The inset shows the spectrum of one of the amplified modes with higher resolution.

Fig. 4
Fig. 4

Selective amplification of two comb tones using SBS and polarization pulling. The frequency spacing was 2 THz (red), 3 THz (black) and 5 THz (blue).

Fig. 5
Fig. 5

Generated microwave signal with a frequency of 24.88296225 GHz. The measured linewidth was 1 Hz and limited by the resolution bandwidth of the electrical spectrum analyzer. In (b) the measured phase noise is shown.

Fig. 6
Fig. 6

(a) Generated millimeter-wave signal with a frequency of 110.39044 GHz. The measured linewidth was restricted by the resolution bandwidth of the ESA due to the used microwave mixers (<300 Hz). In (b) the phase noise measurement is shown.

Fig. 7
Fig. 7

Measured photocurrent at the THz-receiver for 200 GHz (a) and 1 THz (b). At the intervals with zero photocurrent, the free-space link was intentionally interrupted.

Fig. 8
Fig. 8

Optical power spectral density of the two selected tones, following the modulation of one of them by an on-off keying, 40 Gbit/s pseudo-random bit sequence. Inset: eye diagram of the photo-current following down-conversion of the two tones.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i out ~ A ( t ) cos [ 2 π Δ f ( t ) + φ ( t ) ]
E in ( ω s ) = E 0 ( ω s ) ( a e ^ max in + b e ^ min in )
E out ( ω s ) = E 0 ( ω s ) [ a G max ( ω s ) e ^ max out + b G min ( ω s ) e ^ min out ]

Metrics