Abstract

We introduce an all-optical, format transparent hash code generator and a hash comparator for data packets verification with low latency at high baudrate. The device is reconfigurable and able to generate hash codes based on arbitrary functions and perform the comparison directly in the optical domain. Hash codes are calculated with custom interferometric circuits implemented with a Fourier domain optical processor. A novel nonlinear scheme featuring multiple four-wave mixing processes in a single waveguide is implemented for simultaneous phase and amplitude comparison of the hash codes before and after transmission. We demonstrate the technique with single polarisation BPSK and QPSK signals up to a data rate of 80 Gb/s.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill Higher Education, 2008).
  2. A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (John Wiley & Sons, 2011).
  3. D. Russell, The Principles of Computer Networking (Cambridge University Press, 1989).
  4. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Select. Topics Quantum Electron. 12, 544–554 (2006).
    [CrossRef]
  5. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010).
    [CrossRef]
  6. C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).
  7. K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
    [CrossRef]
  8. M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).
  9. Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).
  10. M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009).
    [CrossRef]
  11. Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).
  12. P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006).
    [CrossRef]
  13. J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide.” Opt. Express15, 5543–5549 (2007).
    [CrossRef] [PubMed]
  14. J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
    [CrossRef]
  15. J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express21, 690–697 (2013).
    [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  17. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17, 12555–12563 (2009).
    [CrossRef] [PubMed]
  18. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008).
    [CrossRef]
  19. J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009).
    [CrossRef]
  20. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
    [CrossRef]
  21. B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
    [CrossRef]
  22. A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
    [CrossRef]
  23. P. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett.27, 1440–1441 (1991).
    [CrossRef]
  24. H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
    [CrossRef]
  25. Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011).
    [CrossRef]

2013 (1)

2012 (1)

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

2011 (3)

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011).
[CrossRef]

2010 (1)

Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).

2009 (4)

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009).
[CrossRef]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17, 12555–12563 (2009).
[CrossRef] [PubMed]

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009).
[CrossRef]

2008 (2)

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008).
[CrossRef]

2007 (1)

2006 (2)

P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006).
[CrossRef]

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Select. Topics Quantum Electron. 12, 544–554 (2006).
[CrossRef]

2002 (1)

K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
[CrossRef]

1998 (1)

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

1991 (1)

P. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett.27, 1440–1441 (1991).
[CrossRef]

Abakoumov, D.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Aikawa, Y.

Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).

Andrekson, P.

P. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett.27, 1440–1441 (1991).
[CrossRef]

Azadet, K.

K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
[CrossRef]

Baxter, G.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Bolger, J. A.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Brasier, O.

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

Bruen, A. A.

A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (John Wiley & Sons, 2011).

Chang, D.

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010).
[CrossRef]

Clausen, A.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Cotter, D.

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

Du, L. B.

Eggleton, B.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Eggleton, B. J.

J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express21, 690–697 (2013).
[CrossRef] [PubMed]

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Ellis, A.

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

Essiambre, R.

P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006).
[CrossRef]

Forcinito, M. A.

A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (John Wiley & Sons, 2011).

Freiberger, M.

M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).

Frisken, S.

J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express21, 690–697 (2013).
[CrossRef] [PubMed]

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Galili, M.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Gruner-Nielsen, L.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Hansen Mulvad, H.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Haratsch, E.

K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
[CrossRef]

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008).
[CrossRef]

Jeppesen, P.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Kim, H.

K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
[CrossRef]

Kubo, K.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Kumar, S.

Lowery, A. J.

Lucek, J.

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

Luther-Davies, B.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011).
[CrossRef]

Madden, S.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011).
[CrossRef]

Matsumoto, W.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

McGeehan, J. E.

Mercado, E.

M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).

Miyata, Y.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Mizuochi, T.

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Select. Topics Quantum Electron. 12, 544–554 (2006).
[CrossRef]

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010).
[CrossRef]

Moodie, D.

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008).
[CrossRef]

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010).
[CrossRef]

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Oxenløwe, L.

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

Pant, R.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Paquot, Y.

Pelusi, M.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Pelusi, M. D.

Pitcher, D.

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

Poole, S.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Proakis, J. G.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill Higher Education, 2008).

Roelens, M. A. F.

J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express21, 690–697 (2013).
[CrossRef] [PubMed]

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Russell, D.

D. Russell, The Principles of Computer Networking (Cambridge University Press, 1989).

Salehi, M.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill Higher Education, 2008).

Schroder, J.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Schröder, J.

Shimizu, S.

Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).

Sugihara, K.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Sugihara, T.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Sun, J.

Sun, Q.

Suzuki, M.

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009).
[CrossRef]

Templeton, D.

M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).

Uenohara, H.

Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009).
[CrossRef]

Van Erps, J.

VanErps, J.

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

Vo, T.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Vo, T. D.

Wang, J.

Willner, A. E.

Winzer, P.

P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006).
[CrossRef]

Xiao, Z.

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Xie, C.

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Yong Choi, D.

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Yoshida, H.

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

Yu, F.

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Yu, J.

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009).
[CrossRef]

Zhao, Y.

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Zhou, X.

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009).
[CrossRef]

Electron. Lett. (4)

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009).
[CrossRef]

A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998).
[CrossRef]

P. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett.27, 1440–1441 (1991).
[CrossRef]

H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009).
[CrossRef]

IEEE J. Select. Topics Quantum Electron (1)

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Select. Topics Quantum Electron. 12, 544–554 (2006).
[CrossRef]

IEEE J. Solid-State Circuits (1)

K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002).
[CrossRef]

J. Lightw. Technol. (2)

J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008).
[CrossRef]

Laser & Photonics Review (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008).
[CrossRef]

Laser & Photonics Reviews (1)

B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012).
[CrossRef]

Opt. Express (4)

Optical Fiber Technology (1)

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009).
[CrossRef]

Photonics in Switching (1)

Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).

Proc. of SPIE-OSA-IEEE (1)

C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).

Proceedings of the IEEE (1)

P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006).
[CrossRef]

Other (7)

M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).

Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010).
[CrossRef]

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill Higher Education, 2008).

A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (John Wiley & Sons, 2011).

D. Russell, The Principles of Computer Networking (Cambridge University Press, 1989).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of the all-optical hash key verified link. Hash codes are generated inside the transmitter and communicated through the network along with the data in an adjacent channel. At the receiver side, hash codes are recalculated from the data channel and compared to the transmitted hash. On the diagram, red components indicate optical devices and green the electrical domain.

Fig. 2
Fig. 2

Functional diagram. Arrows aligned with a same horizontal level represent signals at a same wavelength.

Fig. 3
Fig. 3

Principle of the all optical coherent signal comparator. Left: hash signals to be compared are copropagated with pumps through a third-order nonlinear medium after relative phase and amplitude adjustment. Inset: Two simultaneous FWM-based wavelength shifting processes occur inside the nonlinear medium. Two pumps with half the frequency spacing of the hash signals bring both idlers to the same wavelength. Initial configuration of the signals with opposite phases (represented by arrows facing in opposite directions) causes the idlers to interfere destructively so as to cancel the total idler product when both hash are equal. Mismatch between hash codes causes an idler spike. Bandpass filtering (BPF) of the total idler extracts the error signal.

Fig. 4
Fig. 4

Experimental setup. A wideband flat frequency comb is QPSK-encoded with two successive phase modulators (PM). Hash keys are calculated before and after transmission inside Fourier-domain programmable optical processors (FD-POP). Combination with a pump pulse train and wavelength-selective phase control by the second FD-POP conditions the signals for coherent hash comparison inside a 30 m section of highly nonlinear fibre (HNLF). PM: phase modulator ; BPF: bandpass filter.

Fig. 5
Fig. 5

Hash code generation by Fourier domain optical processing. Left: power and phase transfer functions programmed in the FD-POP. The spectral profiles applied to the data signal reproduce the characteristics of a multipath interferometric circuit (MIC) coherently adding successive bits. Blue, green and red traces correspond to different MIC configurations. The other channel is left untouched through a bandpass filter transfer function. Right: equivalent MIC implemented in the FD-POP.

Fig. 6
Fig. 6

Experimental intensity plots of the hash codes for BPSK (first and second columns) and QPSK (third and fourth columns) signals. Information encoded in the phase of the hash signals is not represented. Time traces (top row) and eye diagrams (bottom) of the 64 bits patterns are measured with a sampling oscilloscope. Blues traces show simulation results for the corresponding bit patterns.

Fig. 7
Fig. 7

Experimental optical spectrum at the HNLF output. Insert: the total idler cancels out for identical hash and not if they differ. Solid: both hash signals equal ; dotted: one error every 512 symbols ; dashed: hash functions different for both signals.

Fig. 8
Fig. 8

Time traces of the error signal after bandpass filtering of the idler. Top: Idler channel filtered out. Bottom left: both hash signals equal. Bottom right: hash signals different. Hash code mismatch is reflected by a nonzero error signal after optical subtraction.

Fig. 9
Fig. 9

Variation of the signal generator to create localized errors in a BPSK signal. The two replicate channels are split onto two arms, one being affected by a π phase shift of one bit period every 512 symbols. Both paths are recombined into the first FD-POP acting as a wavelength selective switch. PM: phase modulator ; PS: phase shifter.

Fig. 10
Fig. 10

Time traces of the error signal after bandpass filtering of the idler in the case of a single error. Top: Idler channel filtered out. Bottom left: both hash signals equal (no error). Bottom right: a single error causes a spike in the error signal.

Fig. 11
Fig. 11

Hash key verified link of 20.72 km. Left: composition of the link. Right: Idler channel filtered out in case of both equal (green) and different (black) hash function definitions. The corresponding eye diagrams show the error signal in the time domain.

Fig. 12
Fig. 12

Theoretical and experimental inaccuracy in the hash subtraction as functions of the phase perturbation between the two hash signals. The measurement was realized by feeding two equal signals in the coherent comparator and sweeping over their relative phase.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E H 1 = E H 1 e i 2 π ν H 1 t
E H 2 = E H 2 e i 2 π ( ν H 1 + Δ ν ) t
E P 1 = E P 1 e i 2 π ν P 1 t
E P 2 = E P 2 e i 2 π ( ν P 1 + Δ ν 2 ) t
ϕ I 1 = ϕ H 1 + 2 ϕ P 1 = ϕ H 1 + 2 ϕ P
ϕ I 2 = ϕ H 2 + 2 ϕ P 2 = ϕ H 2 + 2 ϕ P
E I tot = E I 1 + E I 2 = A I 1 e i ϕ I 1 + A I 2 e i ϕ I 2 ( A H 1 e i ϕ H 1 + A H 2 e i ϕ H 2 ) × e i .2 ϕ P absolute phase   offset
= ( A H 1 A H 2 ) e i ϕ H 1
E H = j = 1 N E j = A S e i ϕ S N j = 1 N β j e i ( k Δ L j + ϕ j )
= | E H | 2 | E S | 2 = 1 N | j = 1 N β j e i ( 2 π . ν ν j + ϕ j ) | 2
= 1 N ( ( j = 1 N β j cos ( 2 π . ν ν j + ϕ j ) ) 2 + ( j = 1 N β j sin ( 2 π . ν ν j + ϕ j ) ) 2 )
ϕ = angle ( E H ) = atan ( Im ( E H ) Re ( E H ) ) = atan ( j = 1 N β j sin ( 2 π . ν ν j + ϕ j ) j = 1 N β j cos ( 2 π . ν ν j + ϕ j ) )

Metrics