Abstract

A proof-of-principle study of a 1.97-µm Tm:Lu2O3 ceramic disk laser, intracavity pumped by a 1.2-µm semiconductor disk laser, is presented. The demonstrated concept allows for improved pump absorption and takes advantage of the broad wavelength coverage provided by semiconductor disk laser technology. For thin disk lasers the small thickness of the gain element typically leads to inefficient pump light absorption. This problem is usually solved by using a complex multi-pass pump arrangement. In this study we address this challenge with a new laser concept of an intracavity pumped ceramic thin disk laser. The output power at 1.97 µm was limited to 250 mW due to heat spreader-less mounting scheme of the ceramic gain disk.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent Differential Absorption Lidar Measurements of Co2,” Appl. Opt.43(26), 5092–5099 (2004).
    [CrossRef] [PubMed]
  2. J. T. Olesberg, “Noninvasive blood glucose monitoring in the 2.0-2.5 μm wavelength range,” in IEEE Lasers and Electro-optics Society Meeting 20012, 529 (2001).
  3. S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
    [CrossRef]
  4. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
    [CrossRef]
  5. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
    [CrossRef] [PubMed]
  6. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
    [CrossRef]
  7. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  8. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
    [CrossRef]
  9. B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).
  10. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
    [CrossRef]
  11. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express2(2), 183–189 (2012).
    [CrossRef]
  12. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express20(17), 19349–19354 (2012).
    [CrossRef] [PubMed]
  13. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
    [CrossRef]
  14. C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
    [CrossRef] [PubMed]
  15. M. Schellhorn, P. Koopmann, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Diode-pumped Tm:Lu2O3 thin disk laser,” in OSA Advanced Solid-State Photonics 2011, paper ATuB14 (2011).
  16. O. Okhotnikov, Semiconductor Disk Lasers: Physics and Technology (Wiley-VCH, 2010).
  17. D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  18. J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, “2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser,” Opt. Lett.35(12), 1935–1937 (2010).
    [CrossRef] [PubMed]
  19. A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express18(21), 21645–21650 (2010).
    [CrossRef] [PubMed]
  20. E. J. Saarinen, J. Nikkinen, and O. G. Okhotnikov, “Semiconductor Disk Laser with Frequency-Shifted Feedback,” Photon. Technol. Lett.23(9), 567–569 (2011).
    [CrossRef]
  21. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
    [CrossRef]
  22. R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 209- µm Ho:YAG laser,” Opt. Lett.17(10), 736–738 (1992).
    [CrossRef] [PubMed]
  23. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
    [CrossRef]
  24. S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
    [CrossRef]
  25. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
    [CrossRef]

2013 (2)

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

2012 (3)

2011 (3)

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

E. J. Saarinen, J. Nikkinen, and O. G. Okhotnikov, “Semiconductor Disk Laser with Frequency-Shifted Feedback,” Photon. Technol. Lett.23(9), 567–569 (2011).
[CrossRef]

2010 (3)

2009 (1)

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

2007 (2)

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

2004 (1)

2003 (1)

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

1992 (1)

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Aggarwal, I.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Amzajerdian, F.

Antipov, O. L.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Baer, C. R.

Baker, C.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Barnes, B. W.

Beyon, J. Y.

Bhachu, B.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Bisson, J. F.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Burns, D.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Cutter, K.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Davis, R. E.

Dunn, M. H.

Esterowitz, L.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Fetzer, G.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Fochs, S.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Frantz, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Fuhrberg, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Golling, M.

Guina, M.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Heckl, O. H.

Hopkins, J. M.

Huber, G.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Ismail, S.

Kaminskii, A. A.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Kapon, E.

Kaspar, S.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Kavaya, M. J.

Keller, U.

Kim, W.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Koch, G. J.

Kohler, K.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Koopmann, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

Kränkel, C.

Krestnikov, I.

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Lagatsky, A. A.

Lamrini, S.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Leinonen, T.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Letts, S.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Lu, J.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Manz, C.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Mereuta, A.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Musha, M.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Nikkinen, J.

E. J. Saarinen, J. Nikkinen, and O. G. Okhotnikov, “Semiconductor Disk Laser with Frequency-Shifted Feedback,” Photon. Technol. Lett.23(9), 567–569 (2011).
[CrossRef]

J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, “2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser,” Opt. Lett.35(12), 1935–1937 (2010).
[CrossRef] [PubMed]

Novikov, A. A.

Okhotnikov, O. G.

Olesberg, J. T.

J. T. Olesberg, “Noninvasive blood glucose monitoring in the 2.0-2.5 μm wavelength range,” in IEEE Lasers and Electro-optics Society Meeting 20012, 529 (2001).

Parks, C.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Petermann, K.

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

Petros, M.

Ranta, S.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Rantamäki, A.

Rattunde, M.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Rautiainen, J.

Rotter, M.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Saarinen, E. J.

E. J. Saarinen, J. Nikkinen, and O. G. Okhotnikov, “Semiconductor Disk Laser with Frequency-Shifted Feedback,” Photon. Technol. Lett.23(9), 567–569 (2011).
[CrossRef]

Sadowski, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Sanghera, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Saraceno, C. J.

Scholle, K.

Schwarz, U. T.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Shaw, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Shirakawa, A.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Sibbett, W.

Singh, U. N.

Sirbu, A.

Soules, T.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Stoneman, R. C.

Stothard, D. J.

Südmeyer, T.

Takaichi, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Tavast, M.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Tokurakawa, M.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

Topper, T.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Ueda, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Uematsu, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Van Lieu, N.

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

Vay, S.

Villalobos, G.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Wagner, J.

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

Yagi, H.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Yamamoto, B.

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Yanagitani, T.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

Yu, J.

Zakharov, N. G.

Zinoviev, A. P.

Appl. Opt. (1)

Appl. Phys. B (1)

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102(1), 19–24 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

S. Kaspar, M. Rattunde, T. Topper, U. T. Schwarz, C. Manz, K. Kohler, and J. Wagner, “Electro-optically cavity dumped 2 µm semiconductor disk laser emitting 3 ns pulses of 30 W peak power,” Appl. Phys. Lett.101(14), 141121 (2012).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett.83(6), 1101 (2003).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb 3+:Y 2O3 ceramic laser,” Appl. Phys. Lett.90(7), 071101 (2007).
[CrossRef]

Electron. Lett. (1)

S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett.49(1), 59–60 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.24(6), 924–933 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW Thin Disc Laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials, Past and present,” Opt. Mater.35(4), 693–699 (2013).
[CrossRef]

Opt. Mater. Express (1)

Photon. Technol. Lett. (1)

E. J. Saarinen, J. Nikkinen, and O. G. Okhotnikov, “Semiconductor Disk Laser with Frequency-Shifted Feedback,” Photon. Technol. Lett.23(9), 567–569 (2011).
[CrossRef]

Other (4)

J. T. Olesberg, “Noninvasive blood glucose monitoring in the 2.0-2.5 μm wavelength range,” in IEEE Lasers and Electro-optics Society Meeting 20012, 529 (2001).

M. Schellhorn, P. Koopmann, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Diode-pumped Tm:Lu2O3 thin disk laser,” in OSA Advanced Solid-State Photonics 2011, paper ATuB14 (2011).

O. Okhotnikov, Semiconductor Disk Lasers: Physics and Technology (Wiley-VCH, 2010).

B. Yamamoto, B. Bhachu, K. Cutter, S. Fochs, S. Letts, C. Parks, M. Rotter, and T. Soules, “The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid-State Laser,” in OSA Advanced Solid-State Photonics, paper WC5 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transmission of the ceramic Tm:Lu2O3 disk. (b) Energy diagram of Tm:Lu2O3 ceramics showing 800-nm and 1200-nm pumping transitions.

Fig. 2
Fig. 2

Experimental setup. The SDL cavity is sketched in green and the ceramic disk laser cavity in red. HR –high reflective, RoC –radius of curvature, PR –partially reflective.

Fig. 3
Fig. 3

Output power of the 2-µm ceramic disk laser with different output couplers (OCs) (in black, left vertical axis) and optical power circulating in the SDL cavity at 1160 nm with 1.2-% OC of the ceramic laser (red dots, right vertical axis) as a function of the diode pump power. The SDL intracavity power was evaluated from the light leaking through one of the HR mirrors of the SDL cavity. Changes in the wavelength of the SDL (and thus in absorption by the ceramic disk) contribute to the shapes of the output curves.

Fig. 4
Fig. 4

(a) Spectrum of the SDL at various diode pump powers. (b) Ceramic disk laser spectrum at output powers of 2 and 250 mW. Beam shapes at maximum output powers measured with a pyrocamera are shown as insets in (a) for the SDL and in (b) for the ceramic disk laser.

Metrics