Abstract

We proposed and investigated a novel type of all-glass hybrid fiber where light is confined in the low-index core due to both total internal reflection and coherent Fresnel reflection (a photonic bandgap mechanism). The hybrid mode has an anomalous dispersion of 13 ps/(nm km) at 1064 nm and low loss (~6 dB/km), and it can be easily excited by splicing with a single-mode step-index fiber. The compression of positively chirped 8 ps pulses down to 330 fs was demonstrated with the fabricated hybrid fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining photonic bandgap Bragg fiber

Mikhail E. Likhachev, Andrey D. Pryamikov, Dmitry A. Gaponov, Mikhail M. Bubnov, Mikhail Yu. Salganskii, Vladimir F. Khopin, Aleksei N. Guryanov, and Sébastien Février
Opt. Lett. 34(9) 1366-1368 (2009)

Negative curvature fibers

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu
Adv. Opt. Photon. 9(3) 504-561 (2017)

Low-loss singlemode large mode area all-silica photonic bandgap fiber

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov
Opt. Express 14(2) 562-569 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
    [Crossref] [PubMed]
  2. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
    [Crossref] [PubMed]
  3. R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
    [Crossref]
  4. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
    [Crossref] [PubMed]
  5. M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
    [Crossref]
  6. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
    [Crossref] [PubMed]
  7. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006).
    [Crossref] [PubMed]
  8. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Dispersion design of all-solid photonic bandgap fiber,” J. Opt. Soc. Am. B 24(11), 2899–2905 (2007).
    [Crossref]
  9. Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipocs, “Photonic bandgap fibers with resonant structures for tailoring the dispersion,” Opt. Express 17(14), 11869–11883 (2009).
    [Crossref] [PubMed]
  10. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
    [Crossref] [PubMed]
  11. H. M. Presby and I. P. Kaminow, “Binary silica optical fibers: refractive index and profile dispersion measurements,” Appl. Opt. 15(12), 3029–3036 (1976).
    [Crossref] [PubMed]
  12. A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
    [Crossref]
  13. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
    [Crossref]
  14. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [Crossref] [PubMed]

2010 (1)

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[Crossref]

2009 (1)

2008 (2)

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

2007 (2)

2006 (3)

2004 (1)

2002 (1)

1981 (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

1976 (1)

Belanov, A. S.

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[Crossref]

Blondy, J.-M.

Bubnov, M. M.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Dianov, E. M.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

Dimarcello, F. V.

Dong, X.

Eggleton, B. J.

Fang, Q.

Fevrier, S.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Février, S.

Fleming, S.

Ghalmi, S.

Goto, R.

Guryanov, A. N.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Herda, R.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

Himeno, K.

Humbert, G.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Ilday, F.

Isomäki, A.

Jackson, S. D.

Jamier, R.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Jin, L.

Kai, G.

Kaminow, I. P.

Khopin, V. F.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Kivistö, S.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

Kosolapov, A. F.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

Kuhlmey, B. T.

Levchenko, A. E.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Likhachev, M. E.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Lim, H.

Liu, J.

Liu, Y.

Monberg, E.

Nicholson, J. W.

Okhotnikov, O. G.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
[Crossref] [PubMed]

Presby, H. M.

Ramachandran, S.

Saitoh, K.

Salganskii, M. Y.

Salganskii, M. Yu.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Semjonov, S. L.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

Szabó, Á.

Szipocs, R.

Tsvetkov, S. V.

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[Crossref]

Várallyay, Z.

Wang, Z.

Wise, F.

Wisk, P.

Yan, M. F.

Yuan, S.

Yue, Y.

Appl. Opt. (1)

Electron. Lett. (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipocs, “Photonic bandgap fibers with resonant structures for tailoring the dispersion,” Opt. Express 17(14), 11869–11883 (2009).
[Crossref] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
[Crossref] [PubMed]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
[Crossref] [PubMed]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
[Crossref] [PubMed]

A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
[Crossref] [PubMed]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Photonics Technology Letters (1)

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[Crossref]

Quantum Electron. (1)

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[Crossref]

Other (1)

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index profiles of the BF [3] (a) and the hybrid fiber (b) and intensities of the guided mode.

Fig. 2
Fig. 2

a – refractive index profile of hybrid fiber with different number of high index layers (1, 4 and 8); b - calculated dispersion of the hybrid mode in hybrid fibers with different number of high-index layers (1, 2, 3, 4 and 8).

Fig. 3
Fig. 3

a – RIP of the hybrid fiber with outer depressed layer (Δn(-) = 0.010) and electrical field intensity distributions of the propagating modes; b - calculated dispersion for a Bragg fiber (1), a three-layer hybrid fiber design (2), a four-layer hybrid fiber design with Δn(-) = 0.005 (3) and a four-layer hybrid fiber design with Δn(-) = 0.010 (4).

Fig. 4
Fig. 4

a - RIP of the fabricated hybrid fiber, insets are mode field distributions of the LP02 operating mode (top) and the LP12 second hybrid mode (bottom); b - measured dispersion of the hybrid fibers and optical losses of the hybrid fiber with outer diameter of 110 mm.

Fig. 5
Fig. 5

a: dispersion curves for the hybrid fiber modes; b: measured splicing losses between the hybrid fiber with OD = 110 µm and a SMF.

Fig. 6
Fig. 6

Dependence of the pulse duration on the length of the hybrid fiber; inset – autocorrelation traces measured with and without 69 m of hybrid fiber.

Metrics