Abstract

We proposed and investigated a novel type of all-glass hybrid fiber where light is confined in the low-index core due to both total internal reflection and coherent Fresnel reflection (a photonic bandgap mechanism). The hybrid mode has an anomalous dispersion of 13 ps/(nm km) at 1064 nm and low loss (~6 dB/km), and it can be easily excited by splicing with a single-mode step-index fiber. The compression of positively chirped 8 ps pulses down to 330 fs was demonstrated with the fabricated hybrid fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
    [CrossRef] [PubMed]
  2. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
    [CrossRef] [PubMed]
  3. R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
    [CrossRef]
  4. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
    [CrossRef] [PubMed]
  5. M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
    [CrossRef]
  6. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
    [CrossRef] [PubMed]
  7. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006).
    [CrossRef] [PubMed]
  8. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Dispersion design of all-solid photonic bandgap fiber,” J. Opt. Soc. Am. B 24(11), 2899–2905 (2007).
    [CrossRef]
  9. Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipocs, “Photonic bandgap fibers with resonant structures for tailoring the dispersion,” Opt. Express 17(14), 11869–11883 (2009).
    [CrossRef] [PubMed]
  10. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
    [CrossRef] [PubMed]
  11. H. M. Presby and I. P. Kaminow, “Binary silica optical fibers: refractive index and profile dispersion measurements,” Appl. Opt. 15(12), 3029–3036 (1976).
    [CrossRef] [PubMed]
  12. A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
    [CrossRef]
  13. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
    [CrossRef]
  14. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
    [CrossRef] [PubMed]

2010 (1)

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[CrossRef]

2009 (1)

2008 (2)

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[CrossRef] [PubMed]

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

2007 (2)

2006 (3)

2004 (1)

2002 (1)

1981 (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

1976 (1)

Belanov, A. S.

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[CrossRef]

Blondy, J.-M.

Bubnov, M. M.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Dianov, E. M.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

Dimarcello, F. V.

Dong, X.

Eggleton, B. J.

Fang, Q.

Fevrier, S.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Février, S.

Fleming, S.

Ghalmi, S.

Goto, R.

Guryanov, A. N.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Herda, R.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

Himeno, K.

Humbert, G.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Ilday, F.

Isomäki, A.

Jackson, S. D.

Jamier, R.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Jin, L.

Kai, G.

Kaminow, I. P.

Khopin, V. F.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Kivistö, S.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

Kosolapov, A. F.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

Kuhlmey, B. T.

Levchenko, A. E.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Likhachev, M. E.

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Lim, H.

Liu, J.

Liu, Y.

Monberg, E.

Nicholson, J. W.

Okhotnikov, O. G.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
[CrossRef] [PubMed]

Presby, H. M.

Ramachandran, S.

Saitoh, K.

Salganskii, M. Y.

Salganskii, M. Yu.

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Semjonov, S. L.

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

Szabó, Á.

Szipocs, R.

Tsvetkov, S. V.

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[CrossRef]

Várallyay, Z.

Wang, Z.

Wise, F.

Wisk, P.

Yan, M. F.

Yuan, S.

Yue, Y.

Appl. Opt. (1)

Electron. Lett. (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipocs, “Photonic bandgap fibers with resonant structures for tailoring the dispersion,” Opt. Express 17(14), 11869–11883 (2009).
[CrossRef] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[CrossRef] [PubMed]

J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
[CrossRef] [PubMed]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
[CrossRef] [PubMed]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10(25), 1497–1502 (2002).
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006).
[CrossRef] [PubMed]

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14(2), 562–569 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photonics Technology Letters (1)

R. Herda, S. Kivistö, O. G. Okhotnikov, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Environmentally Stable Mode-Locked Fiber Laser With Dispersion Compensation by Index-Guided Photonic Crystal Fiber,” Photonics Technology Letters 20(3), 217–219 (2008).
[CrossRef]

Quantum Electron. (1)

A. S. Belanov and S. V. Tsvetkov, “High-index-ring three-layer fibres for mode-locked sub-1.3 μm fibre lasers,” Quantum Electron. 40(2), 160–162 (2010).
[CrossRef]

Other (1)

M. E. Likhachev, A. E. Levchenko, M. M. Bubnov, S. Fevrier, R. Jamier, G. Humbert, M. Yu. Salganskii, V. F. Khopin, and A. N. Guryanov, “Low-Loss Dispersion-Shifted Solid-Core Photonic Bandgap Bragg Fiber,” in European Conference on Optical Communication 2007, Berlin, Germany, We7.1.2. (2007)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index profiles of the BF [3] (a) and the hybrid fiber (b) and intensities of the guided mode.

Fig. 2
Fig. 2

a – refractive index profile of hybrid fiber with different number of high index layers (1, 4 and 8); b - calculated dispersion of the hybrid mode in hybrid fibers with different number of high-index layers (1, 2, 3, 4 and 8).

Fig. 3
Fig. 3

a – RIP of the hybrid fiber with outer depressed layer (Δn(-) = 0.010) and electrical field intensity distributions of the propagating modes; b - calculated dispersion for a Bragg fiber (1), a three-layer hybrid fiber design (2), a four-layer hybrid fiber design with Δn(-) = 0.005 (3) and a four-layer hybrid fiber design with Δn(-) = 0.010 (4).

Fig. 4
Fig. 4

a - RIP of the fabricated hybrid fiber, insets are mode field distributions of the LP02 operating mode (top) and the LP12 second hybrid mode (bottom); b - measured dispersion of the hybrid fibers and optical losses of the hybrid fiber with outer diameter of 110 mm.

Fig. 5
Fig. 5

a: dispersion curves for the hybrid fiber modes; b: measured splicing losses between the hybrid fiber with OD = 110 µm and a SMF.

Fig. 6
Fig. 6

Dependence of the pulse duration on the length of the hybrid fiber; inset – autocorrelation traces measured with and without 69 m of hybrid fiber.

Metrics