Abstract

A novel, simple, and compact optical fiber directional bending vector sensor based on Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. The device consists of a piece of seven-core photonic crystal fiber (PCF) sandwiched between two single mode fibers (SMFs) with a lateral offset splicing joint that covering two cores of PCF. Bending sensitivity of the seven-core PCF based MZI is changed by an axial rotation angle, which shows its capacity for recognizing positive and negative directions. Within a curvature range of −7.05 m−1 to 7.05 m−1, the calculated bending sensitivities of two resonant central wavelengths with opposite fiber orientations are 1.232 nm/m−1 and 1.174 nm/m−1, respectively. This novel MZI is formed by invoking interference between the LP01-like supermode and other higher order supermodes in the core, which leads to insensitive to ambient refractive index (ARI). We have also investigated the transmission characteristics of the sensor with the temperature change.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
    [CrossRef]
  2. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
    [CrossRef]
  3. L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28(18), 2681–2687 (2010).
    [CrossRef]
  4. S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett.37(10), 1610–1612 (2012).
    [CrossRef] [PubMed]
  5. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express20(27), 28557–28562 (2012).
    [CrossRef] [PubMed]
  6. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt.43(29), 5425–5428 (2004).
    [CrossRef] [PubMed]
  7. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
    [CrossRef]
  8. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett.36(22), 4380–4382 (2011).
    [CrossRef] [PubMed]
  9. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007).
    [CrossRef] [PubMed]
  10. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012).
    [CrossRef] [PubMed]
  11. X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37(12), 2292–2294 (2012).
    [CrossRef] [PubMed]
  12. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
    [CrossRef] [PubMed]
  13. X. H. Fang, M. L. Hu, B. W. Liu, L. Chai, C. Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010).
    [CrossRef] [PubMed]
  14. D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
    [CrossRef]
  15. B. Kim, T. H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
    [CrossRef] [PubMed]
  16. X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
    [CrossRef]
  17. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  18. T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
    [CrossRef]
  19. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A17(7), 1333–1340 (2000).
    [CrossRef] [PubMed]
  20. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
    [CrossRef]
  21. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt.17(13), 2080–2085 (1978).
    [CrossRef] [PubMed]
  22. N. H. Vu, I. K. Hwang, and Y. H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett.33(2), 119–121 (2008).
    [CrossRef] [PubMed]
  23. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
    [CrossRef]
  24. Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007).
    [CrossRef] [PubMed]

2012

2011

D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett.36(22), 4380–4382 (2011).
[CrossRef] [PubMed]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

2010

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

X. H. Fang, M. L. Hu, B. W. Liu, L. Chai, C. Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010).
[CrossRef] [PubMed]

L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28(18), 2681–2687 (2010).
[CrossRef]

2009

2008

2007

2006

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

2004

2002

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

2000

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A17(7), 1333–1340 (2000).
[CrossRef] [PubMed]

1998

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
[CrossRef]

1978

Albert, J.

Allsop, T.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Andrés, M.

Andrés, P.

Araújo, F. M.

Bai, Z.

Barton, J. S.

Bennett, C.

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Bennett, C. R.

Bennion, I.

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt.43(29), 5425–5428 (2004).
[CrossRef] [PubMed]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

Caldas, P.

Chai, L.

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
[CrossRef]

Chang, C. C.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
[CrossRef]

Chen, C.

Chen, X.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt.43(29), 5425–5428 (2004).
[CrossRef] [PubMed]

Cheng, T. L.

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

Chung, Y.

Cui, L.

Dai, N. L.

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
[CrossRef]

Du, H.

Eggleton, B. J.

Fang, X. H.

Farahi, F.

Ferrando, A.

Ferreira, L. A.

Frazão, O.

Gao, S.

Geng, P.

Han, T.

He, Z.

Hu, M. L.

Huang, L. L.

Hwang, I. K.

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
[CrossRef]

Jones, J. D.

Kalli, K.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

Kawakami, S.

Kim, B.

Kim, T. H.

Kuhlmey, B. T.

Laronche, A.

Lee, Y. H.

Li, J.

Li, J. Y.

Li, S.

Li, Y. F.

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

Liu, B. W.

Liu, Y.

S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett.37(10), 1610–1612 (2012).
[CrossRef] [PubMed]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

Lu, C.

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

MacPherson, W. N.

Martinez-Rios, A.

Michaille, L.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
[CrossRef] [PubMed]

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Miret, J. J.

Monzon-Hernandez, D.

Nagano, K.

Neal, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Nielsen, M.

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Nishida, S.

Patrick, H. J.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
[CrossRef]

Peng, G. D.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Salceda-Delgado, G.

Santos, J. L.

Shao, L.

Shepherd, T.

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Shepherd, T. J.

Silvestre, E.

Simonsen, H.

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

Tashchilina, A. Y.

Taylor, D.

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

Taylor, D. M.

Tong, W.

Torres-Gomez, I.

Viegas, J.

Vohra, S. T.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
[CrossRef]

Vu, N. H.

Wang, C. Y.

Wang, L.

Wang, Q. Y.

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

Wang, Z.

Ward, B. G.

Webb, D.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

Webb, D. J.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Wei, C.

Wei, H.

Williams, J. A. R.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

Wu, D. K.

Wu, Z.

Xiong, L.

Xue, X.

Zhang, C.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

Zhang, H.

Zhang, L.

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt.43(29), 5425–5428 (2004).
[CrossRef] [PubMed]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

Zhang, S.

Zhang, W.

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
[CrossRef]

Zhao, D.

Zheltikov, A. M.

Zhou, K.

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

Zhu, Y.

Appl. Opt.

Chin. Phys. Lett.

T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010).
[CrossRef]

Electron. Lett.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998).
[CrossRef]

D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Commun.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009).
[CrossRef]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

X. H. Fang, M. L. Hu, B. W. Liu, L. Chai, C. Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010).
[CrossRef] [PubMed]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007).
[CrossRef] [PubMed]

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
[CrossRef] [PubMed]

N. H. Vu, I. K. Hwang, and Y. H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett.33(2), 119–121 (2008).
[CrossRef] [PubMed]

D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
[CrossRef] [PubMed]

D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett.36(22), 4380–4382 (2011).
[CrossRef] [PubMed]

S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett.37(10), 1610–1612 (2012).
[CrossRef] [PubMed]

X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37(12), 2292–2294 (2012).
[CrossRef] [PubMed]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Effective mode index versus wavelength for seven-core PCF. The inset is the cross section of seven-core PCF.

Fig. 2
Fig. 2

The calculated mode field distribution for some typical LP01-like (a-c) and LP11-like (d-f) supermodes of seven-core PCF at 1550 nm. Arrows represent the amplitudes and directions of transverse electric fields.

Fig. 3
Fig. 3

Schematic diagram of the MZI with seven-core PCF.

Fig. 4
Fig. 4

Evolution of the transmission spectrum of MZI with the increase of lateral offset value.

Fig. 5
Fig. 5

Transmission spectra of the MZIs with seven-core PCF of different interference lengths: (a) 4 mm; (b) 10 mm; (c) 34 mm.

Fig. 6
Fig. 6

(a) Schematic diagram of the experimental setup for bending measurement. (b) Different fiber orientations.

Fig. 7
Fig. 7

Geometry and refractive index profile of curved seven-core PCF.

Fig. 8
Fig. 8

Spectral responses of the MZI with curvature changed for different axial rotation angles of the fiber: (a) 0°; (b) 180°.

Fig. 9
Fig. 9

Central wavelength shifts with error bar of the MZI against applied bending for different fiber orientations: (a) at 1505.84 nm (0° and 180°); (b) at 1580.15 nm (0° and 180°); (c) central wavelength at 1536.24 nm (90° and 270°).

Fig. 10
Fig. 10

Wavelength shifts of the MZI with a ~34 mm long seven-core PCF as a function of ARI at 1519.82 nm central wavelength.

Fig. 11
Fig. 11

Central wavelength shifts of the MZIs with different lengths as a function of temperature at 1520 nm with MZI length of 34 mm (Black), at 1584 nm with MZI length of 34 mm (Red), at 1505 nm with MZI length of 4 mm (Blue), at 1584 nm with MZI length of 4 mm (Green). The colored lines are the results of linear fitting.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2π( n eff ce - n eff ou )L/λ
λ m =2( n eff ce - n eff ou )L/(2m+1)
C=2d/( d 2 + L 2 )
n (y)= n 0 (1yC)

Metrics