Abstract

Optical manipulation of particulate-loaded, highly scattering (opaque) suspensions is considered impossible. Here we demonstrate theoretically and experimentally optical manipulation of the local properties of such opaque suspensions. We show that the optical forces exerted by multiply-scattered light give rise to dense shock fronts of particle concentration, propagating deep inside the opaque suspensions, where the optical field is completely diffuse. We exploit these waves to demonstrate a plethora of optofluidic manipulations, ranging from optical transport and concentration of large populations of nanoparticles, to light-induced 'writing' of concentrated spots in the suspensions and light-induced phase-transition from suspension to gel in localized volumes inside the fluids.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fainman, Optofluidics: Fundamentals, Fevices, and Applications, (McGraw-Hill, 2010).
  2. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  3. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
    [CrossRef]
  4. S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
    [CrossRef] [PubMed]
  5. A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
    [CrossRef] [PubMed]
  6. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers. (World Scientific, 2006).
  7. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008).
    [CrossRef] [PubMed]
  8. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging. (Wiley-Interscience, 2007).
  9. J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, (Cambridge University Press, 2012).
  10. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  11. I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).
  12. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
    [CrossRef]
  13. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).
  14. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).
  15. P. L. Sachdev, Nonlinear Diffusive Waves, (Cambridge University Press, 1987).
  16. A. Ashkin, J. M. Dziedzic, and P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett.7(6), 276–278 (1982).
    [CrossRef] [PubMed]
  17. V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
    [CrossRef]
  18. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
    [CrossRef] [PubMed]
  19. M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
    [CrossRef]
  20. M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
    [CrossRef] [PubMed]
  21. R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
    [CrossRef] [PubMed]
  22. R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
    [CrossRef]
  23. C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
    [CrossRef] [PubMed]
  24. C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010).
    [CrossRef] [PubMed]
  25. E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
    [CrossRef]
  26. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
    [CrossRef] [PubMed]
  27. Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
    [CrossRef] [PubMed]
  28. K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
    [CrossRef]
  29. Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
    [CrossRef] [PubMed]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-Interscience, 1983).
  31. T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
    [CrossRef]

2012 (6)

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
[CrossRef] [PubMed]

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
[CrossRef]

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

2011 (4)

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

2010 (4)

I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

2008 (3)

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008).
[CrossRef] [PubMed]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

2005 (1)

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

2002 (1)

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

1982 (1)

1977 (1)

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Anyfantakis, M.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

Arakawa, E. T.

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Arnold, C. B.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Ashkin, A.

Barak, A.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Bifano, T.

Brasselet, E.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Butt, H. J.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

Chizhov, S. A.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Christodoulides, D. N.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Chung, J. W.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Cizmar, T.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).

Conti, C.

C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

DelRe, E.

C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

Delville, J. P.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Dholakia, K.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).

Dogariu, A.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
[CrossRef]

Douglass, K. M.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
[CrossRef]

Dziedzic, J. M.

El-Ganainy, R.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Fedorov, S. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Fytas, G.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Ghofraniha, N.

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

Greenfield, E.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Guo, Y. L.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Hadjichristidis, N.

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Hamm, R. N.

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Hoffman, S.

Hourtane, V.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Hubbell, J. A.

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

Inagaki, T.

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Issenmann, B.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Kim, S.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Kohler, W.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

Koniger, A.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

Lamhot, Y.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Langendijk, A.

I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Lifshitz, E.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Lin, R. R.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Loppinet, B.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

Loussert, C.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Lu, Y.

Majumdar, D. S.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Marmur, A.

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).

Moore, J.

Morozov, A.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Mosk, A. P.

I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Nemirovsky, J.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

O’Neil, C. P.

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

Paxman, R.

Peleg, O.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Pispas, S.

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Pogue, B. W.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008).
[CrossRef] [PubMed]

Priestley, R. D.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Psaltis, D.

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rotschild, C.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Rozanov, N. N.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Ruocco, G.

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

Sabirov, R. L.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Saraf, M.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Schneider, D.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Scott, E. A.

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

Segev, M.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Semenov, V. E.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Sigel, R.

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Smirnov, V. A.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Smith, P. W.

Starchikova, T. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Stockbridge, C.

Streets, A. M.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Sukhov, S.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
[CrossRef]

Szameit, A.

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Toussaint, K.

Trillo, S.

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

Vainos, N.

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Vasdekis, A. E.

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Vysotina, N. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Waldmann, M.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Weiss, S.

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Williams, M. W.

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Wunenburger, R.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yao, N.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Yashin, V. E.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Zhang, C.

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011).
[CrossRef]

Microfluid. Nanofluid. (1)

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Nat. Mater. (1)

Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012).
[CrossRef] [PubMed]

Nat. Methods (1)

S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011).
[CrossRef] [PubMed]

Nat. Photonics (5)

I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005).
[CrossRef]

Phys. Rev. B (1)

T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977).
[CrossRef]

Phys. Rev. Lett. (4)

C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006).
[CrossRef] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009).
[CrossRef] [PubMed]

Science (1)

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Soft Matter (1)

M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012).
[CrossRef]

Other (6)

P. L. Sachdev, Nonlinear Diffusive Waves, (Cambridge University Press, 1987).

Y. Fainman, Optofluidics: Fundamentals, Fevices, and Applications, (McGraw-Hill, 2010).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging. (Wiley-Interscience, 2007).

J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, (Cambridge University Press, 2012).

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers. (World Scientific, 2006).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-Interscience, 1983).

Supplementary Material (5)

» Media 1: MOV (9097 KB)     
» Media 2: MOV (1361 KB)     
» Media 3: MOV (1335 KB)     
» Media 4: MOV (2962 KB)     
» Media 5: MOV (2738 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for generating and observing light-induced shock-waves of nanoparticle-concentration in dense opaque fluids. (a) The thin glass micro-channel presented on top of a ruler. The channel is partially filled with light-diffusing suspension (10%, 320nm diameter glass spheres). The filled and unfilled regions of the channel are marked in yellow and red respectively. The suspension is opaque: the ruler marks below the suspension-filled channel are not visible, whereas the marks are easily visible through the empty region of the channel (b) A green laser beam enters the micro-channel from the left (green arrow). When the light enters the suspension, it diffuses in all directions. (c) Experimental setup: the glass micro-channel, and a multimode optical fiber to couple the light directly into the channel. The dynamics within the fluid is probed with a near-infra-red (NIR) imaging system, supplemented by an interferometer and a fast camera. (d) Typical image obtained with the NIR imaging system, showing the channel from the side, and the fiber tip inserted into it.

Fig. 2
Fig. 2

Experimental observation of light-induced concentration shock-waves and optical clearing within opaque fluids. (a) The thick channel is filled with dense colloidal suspension. The laser delivers 2 watts of green light into the channel through the fiber (fiber contour marked in yellow). A dense spearhead-shaped nanoparticle wave-front is propagating to the right and radially outward, penetrating up to 15 photon transport MFP's into the suspension. The wave is shown at three successive times. The spear-shape is highlighted with green arrows indicating vectors normal to the wave-front. A filament (between the two cyan arrows) of high particle concentration develops along the channel, guiding light deep into the suspension. The evolution of the wave is presented in 'Media 1' available online. (b) The thin channel is filled with dense colloidal suspension and the laser delivers ~2.3 watts of green light into the channel through the fiber (fiber and channel contours are marked in white). (i-iv) The evolution of a dense nanoparticle wave-front, propagating in a 'spearhead-like' geometry, shown at four successive times. The spearhead-like propagation is highlighted in (iii) with yellow arrows indicating vectors normal to the wave-front. At the same time, nanoparticles accumulate at the spearhead tip (enclosed with a cyan rectangle in (iv)). The flow pattern supporting the formation of the particle accumulation is indicated by yellow arrows. The evolution of the wave is presented in 'Media 2' available online. (c) Experimentally measured light-induced concentration waves, exhibiting a steep concentration shock-front, and a particle-cleared region trailing the shock-front. The shock profiles display waves generated at four different laser power levels. The 'baseline' concentration in the undisturbed suspension is 10%. As the shock-front passes through the monitored position in the suspension (marked by green X in a-iii) we measure a steep concentration increase, up to 15.5 (55% higher than the baseline), and increasing with optical power. The shock sweeps the particles with it, effectively clearing the area through which the shock has passed. After the shock has passed, the concentration is up to 70% lower than the baseline (as low as 3% concentration). These measurements are obtained with an interferometric apparatus whose details are in Appendix C. (d) Numerical simulations of the 1D model describing the Light-Fluid dynamics. Top: Numerical simulations of the experiments presented in (c), are in qualitative agreement with the experiments: exhibiting a dense shock front trailed by a particle-cleared volume. Bottom: Calculated shock profile along the channel at three successive times. The shock's concentration increases as it propagates and picks up ('sweeps') the nanoparticles from its path.

Fig. 3
Fig. 3

Optical manipulation of the local properties of opaque scattering suspension. (a) Writing of a concentration spot. As the laser is switched on, a region of high nanoparticles accumulation (encompassed with green rectangle) is 'written' at the tip of the spearhead shock front. When the laser is turned off, the high concentration of nanoparticles remains 'written' in place, a distance of ~14 photon transport MFPs inside the suspension. This particle accumulation dissolves away slowly, on time scales of the particle diffusion in the suspension. This process is presented in 'Media 3′ online. (b) Light-induced localized phase-transition inside light scattering suspension: Left: A shock wave propagates in a 10%, silica nanoparticle suspension. The light-induced concentration of nanoparticles at the accumulation point exceeds the critical concentration and transitions into a localized gel ball deep inside the opaque suspension. Right: Once the laser is turned off, the gel ball (marked in green circles) drops down with gravity, as apparent from comparing the left and right images. The cyan line is drawn to assist the visual comparison. This process is presented in 'Media 4' online (c) Optical manipulation of matter 'balls' deep inside light-diffusive suspensions. The laser is kept continuously on. An accumulation of polystyrene nanoparticles (encircled in white) develops ~6 transport MFPs to the right of the fiber. The nanoparticle accumulation is pushed to the right by radiation pressure as the fiber is moved between the two positions presented in the top and bottom images. This process is presented in 'Media 5′ online.

Fig. 4
Fig. 4

Left: Two drops of nanoparticle suspension (silica, 10%, 150nm, encircled in red and in white) are imaged with a thermal camera. Right: A fiber (invisible with the resolution of the camera, and marked with a green arrow) is inserted into the droplet marked in red. Green laser light couples into the fiber, and is continuously applied to the droplet for one minute. Evidently, the droplet does not heat up, as it remains at the same temperature as the control droplet (encircled in white). For comparison, note that the fiber is supported on a steel stand (marked with a yellow arrow), and slight leakage of light from the fiber to this stand heats it up significantly. The 'target cross-hair' mark in the images is a feature of the camera and has no special meaning in the context of this figure.

Fig. 5
Fig. 5

Schematic of the interferometric setup (not to scale, arrows illustrate ray trajectories but are not precise ray traces). A NIR beam (purple arrows) is split into two orthogonal polarizations. One polarization (red arrows) facilitates direct imaging (shadowgraphy) of the dynamics in the channel. The other polarization is also split into two: one part (blue whole arrows) is focused into the fluid channel, where it is used as a probe of nanoparticle concentration changes, as a shockfront crosses its path. This beam is subsequently collimated, and is interfered with a reference beam of the same polarization (blue dashed arrows) on the sensor of a fast camera (~200fps). The resulting interference signal is recorded in real time simultaneously with the imaged dynamics, and analyzed offline. The shock-front is generated in the channel using green CW laser light which is coupled to the channel through the fiber. In the drawing: L = Lens, M = Mirror, BS = beam splitter, PBS = Polarizing beam splitter.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

φ ph t = ( D ph φ ph )
ρ τ =A 2 ρ x 2 Bρ ρ x ,
P rad = < S > c ˜ ( σ s (1g))= w J ph c ˜ ( σ s (1g)),
F grad = 1 2 α ( E 2 )= 1 2 α (I),
F grad = 1 2 α ( 2w φ ph ε 0 n 2 )= αw ε 0 n 2 φ ph
φ ph t + J ph =0 ; J ph = D ph φ ph ,
φ ph t = ( D ph φ ph ).
D ph = c ˜ l t 3
l t = 1 [ σ s ( 1g ) ]ρ
φ ph t = ( c ˜ 3[ σ s ( 1g ) ]ρ φ ph ).
ρ t = ( D par ρμρ( F rad + F grad ) ),
ρ t = ( D par ρ+ρμ( w 3[ σ s ( 1g ) ]ρ φ ph [ σ s ( 1g ) ] )+ αw ε 0 n 2 φ ph )= = ( D par ρ+ μw 3 φ ph ( 1 3αρ ε 0 n 2 ) )
t par t ph = D ph D par = c ˜ 3[ σ s ( 1g ) ]ρ T 6πηa
x φ ph =C 3[ σ s ( 1g ) ]ρ c ˜ C 1 ρ,
ρ t = x ( D par ρ x + μw 3 ( 1 3αρ ε 0 n 2 ) C 1 ρ )= D par ρ xx + μw 3 C 1 ρ x μw 2αρ ρ x ε 0 n 2 C 1 = = D par ρ xx + μw 3 C 1 ρ x [ 1 6αρ ε 0 n 2 ] D par ρ xx +A ρ x Bρ ρ x
X=x+At t=τ
ρ τ +A ρ X = D par ρ XX +A ρ X Bρ ρ X
ρ τ = D par ρ XX Bρ ρ X
C 1 = 1 ρ φ ph x = <S> w c ˜ 3 σ s (1g)= 3 P rad w .
A=μ <S> c ˜ σ s (1g)=μ P rad
v drag =µ P rad = P rad 6πηa , and accordingly, C 1 = 3 v drag μw .
ρ τ = D par ρ XX ρ X ρ 6α v drag ε 0 n 2
δϕ(t)= 2πδn(t)W λ ,
δϕ(t)= 2πβδc(t)W λ

Metrics