Abstract

A low-loss and low-dispersive optical-fiber-like hybrid HE11 mode is developed within a wide band in metallic hollow waveguides if their inner walls are coated with a thin dielectric layer. We investigate terahertz (THz) transmission losses from 0.5 to 5.5 THz and bending losses at 2.85 THz in a polystyrene-lined silver waveguides with core diameters small enough (1 mm) to minimize the number of undesired modes and to make the waveguide flexible, while keeping the transmission loss of the HE11 mode low. The experimentally measured loss is below 10 dB/m for 2 < ν < 2.85 THz (~4-4.5 dB/m at 2.85 THz) and it is estimated to be below 3 dB/m for 3 < ν < 5 THz according to the numerical calculations. At ~1.25 THz, the waveguide shows an absorption peak of ~75 dB/m related to the transition between the TM11-like mode and the HE11 mode. Numerical modeling reproduces the measured absorption spectrum but underestimates the losses at the absorption peak, suggesting imperfections in the waveguide walls and that the losses can be reduced further.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
    [CrossRef]
  2. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
    [CrossRef]
  3. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  4. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  5. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-12-1949 .
    [CrossRef]
  6. A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Comp. Lett. 18, 428–430 (2008). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4536885
  7. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  8. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .
  9. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010).
    [CrossRef] [PubMed]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
    [CrossRef]
  11. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett.34(14), 2231–2233 (2009).
    [CrossRef] [PubMed]
  12. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 .
    [CrossRef]
  13. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  14. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Fabrication and characterization of improved Ag/PS hollow glass waveguides for THz transmission,” Submitted to Appl. Opt. (May 2013).
  15. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
    [CrossRef]
  16. M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
    [CrossRef]
  17. M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
    [CrossRef]
  18. M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
    [CrossRef]
  19. http://spectra.iao.ru/en/en/home/
  20. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express20(17), 19176–19184 (2012).
    [CrossRef] [PubMed]
  21. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express21(3), 3388–3399 (2013).
    [CrossRef] [PubMed]
  22. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992), http://www.sciencedirect.com/science/article/pii/002008919290052U .
    [CrossRef]

2013 (2)

2012 (1)

2011 (2)

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

2010 (1)

2009 (5)

2008 (2)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-12-1949 .
[CrossRef]

2007 (1)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

2000 (1)

1992 (1)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992), http://www.sciencedirect.com/science/article/pii/002008919290052U .
[CrossRef]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 .
[CrossRef]

Adam, A. J.

Allard, J.-F.

Aníbal Fernández, F.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

Argyros, A.

Bang, O.

Beere, H. E.

M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Beltram, F.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Birch, J. R.

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992), http://www.sciencedirect.com/science/article/pii/002008919290052U .
[CrossRef]

Bledt, C. M.

Bowden, B.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

Dhillon, S. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

Doradla, P.

Dubois, C.

Dupuis, A.

Gallot, P. G.

Giles, R. H.

Grischkowsky, D.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

Harrington, J.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Harrington, J. A.

M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
[CrossRef]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010).
[CrossRef] [PubMed]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
[CrossRef]

Iwai, K.

James, R.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

Jamison, S. P.

Jepsen, P. U.

Joseph, C. S.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 .
[CrossRef]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

Kumar, J.

Mark, P. R.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

McGowan, R. W.

Mendis, R.

Mitrofanov, O.

M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010).
[CrossRef] [PubMed]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
[CrossRef]

Mittleman, D. M.

Miyagi, M.

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett.34(14), 2231–2233 (2009).
[CrossRef] [PubMed]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 .
[CrossRef]

Morris, D.

Navarro-Cía, M.

Nielsen, K.

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

Planken, P. C.

Rasmussen, H. K.

Ritchie, D. A.

M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

Setti, V.

Shi, Y.-W.

Sirtori, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

Skorobogatiy, M.

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

Stoeffler, K.

Takeda, E.

Tan, T.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

Tang, X.-L.

Tredicucci, A.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Vincetti, L.

Vitiello, M. S.

M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013).
[CrossRef]

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

Xu, J.-H.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

Appl. Phys. Lett. (4)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 .
[CrossRef]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 .
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 .
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 .
[CrossRef]

IEEE Trans. THz Sci. Tech. (Paris) (1)

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .

Infrared Phys. (1)

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992), http://www.sciencedirect.com/science/article/pii/002008919290052U .
[CrossRef]

J. Appl. Phys. (1)

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 .
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 .
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (6)

Opt. Lett. (1)

Other (4)

http://spectra.iao.ru/en/en/home/

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Fabrication and characterization of improved Ag/PS hollow glass waveguides for THz transmission,” Submitted to Appl. Opt. (May 2013).

A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Comp. Lett. 18, 428–430 (2008). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4536885

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photograph of the PS-lined cylindrical metallic waveguide. (b) Photograph of the input section (top) and schematic of the near-field waveguide mode imaging system (bottom). Inset: detail of the PS-lined cylindrical metallic waveguide. (c) Schematic of the sub-wavelength aperture near-field probe configuration. Near-field electric field Ex profiles (1.2 mm × 1.2 mm) at the output of the cylindrical metallic waveguide without (d) and with (e) the PS internal layer showing the TE11 and HE11 modes.

Fig. 2
Fig. 2

Waveforms detected on the waveguide axis after propagating through an 80 mm long (a) and 300 mm long (b) Ag/PS waveguide.

Fig. 3
Fig. 3

(a) Spectra corresponding to the waveforms of Fig. 2. (b) Experimental and modeled transmission loss spectra of the Ag/PS waveguide. The diamond shows the experimentally measured transmission loss of ~4.2 dB/m using a single frequency (2.85 THz) QCL and the cutback method. (c) Modeled transmission loss spectra up to 5.5 THz of the Ag-only waveguide with σAg (solid gray line) and σ = 0.32σAg (dashed gray line), and of the Ag/PS waveguide with PS thickness: 8 μm (red line), 10 μm (colors and line styles as panel (b)) and 14 μm (green line). Top insets: amplitude of the field distribution in dB for 10 μm PS coating at notable frequencies; from left to right: 1.2, 2, 3 and 4 THz.

Fig. 4
Fig. 4

(a) Far field spatial intensity distribution of a 2.85 THz QCL upon exiting a 1 m long, 1 mm bore diameter Ag/PS flexible hollow waveguide. The beam profile has been measured by focusing the QCL beam directly at the center of hollow waveguide axis by means of an f/1 Picarin lens. (b) Bending losses for a 1 m long waveguide measured while coupling the QCL with a 3 cm focal length Picarin. The dashed line is a quadratic fit to the data. The error bars show absolute errors for each individual data point calculated using the standard deviation in the power measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ d =d2π n d 2 1 tan( n d ( n d 2 1 ) 1/4 )

Metrics