Abstract

Integrated absorbance (IA) can be used to infer gas temperature and concentration directly, in this paper, we proposed a new method that uses the 1st harmonic to measure the IA under low absorption conditions (<10%). Subsequently, a large number of numerical simulations are used to validate the reliability and accuracy of this method, and several absorption lines of CO2 and H2O molecules near 6981 cm–1 are selected to determine the IA and species concentration in experiments. Calculation and experiment results show that the proposed method can accurately measure IA in actual measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
    [CrossRef]
  2. Y. R. Sun, H. Pan, C. F. Cheng, A. W. Liu, J. T. Zhang, and S. M. Hu, “Application of cavity ring-down spectroscopy to the Boltzmann constant determination,” Opt. Express19(21), 19993–20002 (2011).
    [CrossRef] [PubMed]
  3. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
    [CrossRef]
  4. R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
    [CrossRef]
  5. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
    [CrossRef]
  6. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
    [CrossRef]
  7. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
    [CrossRef]
  8. S. Schilt, “Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications,” Appl. Phys. B100(2), 349–359 (2010).
    [CrossRef]
  9. Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
    [CrossRef]
  10. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
    [CrossRef]
  11. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
    [CrossRef] [PubMed]
  12. J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999).
    [CrossRef]
  13. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
    [CrossRef]
  14. F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
    [CrossRef]
  15. J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000).
    [CrossRef]
  16. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
    [CrossRef] [PubMed]
  17. H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
    [CrossRef]
  18. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
    [CrossRef]
  19. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009).
    [CrossRef] [PubMed]
  20. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
    [CrossRef]
  21. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol.25(10), 3114–3125 (2007).
    [CrossRef]
  22. A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008).
    [CrossRef]
  23. L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
    [CrossRef]
  24. G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).
  25. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011).
    [CrossRef]
  26. P. Zhimin, D. Yanjun, C. Lu, and Y. Qiansuo, “Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape,” Opt. Express20(11), 11976–11985 (2012).
    [CrossRef] [PubMed]
  27. B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
    [CrossRef]
  28. A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express17(12), 9602–9607 (2009).
    [CrossRef] [PubMed]
  29. A. L. Chakraborty, K. Ruxton, and W. Johnstone, “Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling,” Opt. Express18(1), 267–280 (2010).
    [CrossRef] [PubMed]
  30. K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
    [CrossRef]
  31. Y. Y. Liu, J. L. Lin, G. M. Huang, Y. Q. Guo, and C. X. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B18(5), 666–672 (2001).
    [CrossRef]
  32. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
    [CrossRef]

2013 (2)

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

2012 (1)

2011 (6)

G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011).
[CrossRef]

Y. R. Sun, H. Pan, C. F. Cheng, A. W. Liu, J. T. Zhang, and S. M. Hu, “Application of cavity ring-down spectroscopy to the Boltzmann constant determination,” Opt. Express19(21), 19993–20002 (2011).
[CrossRef] [PubMed]

H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
[CrossRef]

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

2010 (6)

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

S. Schilt, “Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications,” Appl. Phys. B100(2), 349–359 (2010).
[CrossRef]

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

A. L. Chakraborty, K. Ruxton, and W. Johnstone, “Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling,” Opt. Express18(1), 267–280 (2010).
[CrossRef] [PubMed]

2009 (4)

A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express17(12), 9602–9607 (2009).
[CrossRef] [PubMed]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
[CrossRef]

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

2008 (3)

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
[CrossRef]

A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008).
[CrossRef]

2007 (1)

2006 (2)

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
[CrossRef]

2001 (2)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Y. Y. Liu, J. L. Lin, G. M. Huang, Y. Q. Guo, and C. X. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B18(5), 666–672 (2001).
[CrossRef]

2000 (1)

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000).
[CrossRef]

1999 (2)

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
[CrossRef] [PubMed]

1977 (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Arsad, N.

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Axner, O.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
[CrossRef] [PubMed]

Bain, J. R. P.

Boucher, T. J.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

Cen, K. F.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Cetegen, B. M.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

Chakraborty, A. L.

Chao, X.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Che, L.

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Cheng, C. F.

Chi, Y.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Culshaw, B.

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Ding, Y. J.

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

Duan, C. X.

Duffin, K.

G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011).
[CrossRef]

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express17(12), 9602–9607 (2009).
[CrossRef] [PubMed]

A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008).
[CrossRef]

K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol.25(10), 3114–3125 (2007).
[CrossRef]

Ebert, V.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Engelbrecht, R.

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

Farooq, A.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
[CrossRef]

Fisher, B. T.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

Fleming, J. W.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

Guo, Y. Q.

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Hanson, R. K.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
[CrossRef]

Henningsen, J.

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000).
[CrossRef]

Hinckley, K. M.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

Hu, S. M.

Huang, G. M.

Huang, Q. X.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Hunsmann, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Jeffries, J. B.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009).
[CrossRef] [PubMed]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
[CrossRef]

Johnstone, W.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011).
[CrossRef]

G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).

A. L. Chakraborty, K. Ruxton, and W. Johnstone, “Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling,” Opt. Express18(1), 267–280 (2010).
[CrossRef] [PubMed]

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express17(12), 9602–9607 (2009).
[CrossRef] [PubMed]

A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008).
[CrossRef]

K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol.25(10), 3114–3125 (2007).
[CrossRef]

Kane, D. J.

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999).
[CrossRef]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999).
[CrossRef] [PubMed]

Lengden, M.

Li, H.

H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

Li, L.

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Li, N.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Li, X. H.

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

Lin, J. L.

Lindberg, A. M.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Lins, B.

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

Liu, A. W.

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
[CrossRef]

Liu, X.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006).
[CrossRef] [PubMed]

Liu, Y. Y.

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Lu, C.

McGettrick, A. J.

McManus, K. R.

H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
[CrossRef]

Moodie, D. G.

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Pan, H.

Peng, Z. M.

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

Qiansuo, Y.

Rascher, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Renfro, M. W.

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

Rieker, G. B.

Ruxton, K.

Ruxtona, K.

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

Schilt, S.

S. Schilt, “Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications,” Appl. Phys. B100(2), 349–359 (2010).
[CrossRef]

Schmauss, B.

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

Schurr, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Silver, J. A.

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999).
[CrossRef]

Simonsen, H.

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000).
[CrossRef]

Stewart, G.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011).
[CrossRef]

G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008).
[CrossRef]

K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol.25(10), 3114–3125 (2007).
[CrossRef]

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Sun, K.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

Sun, Y. R.

Sur, R.

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

Thursby, G.

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Wagner, S.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Wang, F.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Wang, Y. D.

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Wehe, S. D.

H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
[CrossRef]

Woodmansee, M. A.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

Wunderle, K.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

Yan, J. H.

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

Yanjun, D.

Zhang, J. T.

Zhimin, P.

Zinn, P.

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (10)

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008).
[CrossRef]

S. Schilt, “Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications,” Appl. Phys. B100(2), 349–359 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004).
[CrossRef]

J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009).
[CrossRef]

K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013).
[CrossRef]

B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010).
[CrossRef]

Flow Meas. Instrum. (1)

F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977).
[CrossRef]

Meas. Sci. Technol. (1)

J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999).
[CrossRef]

Opt. Commun. (1)

L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011).
[CrossRef]

Opt. Express (4)

Proc. Combust. Inst. (2)

H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011).
[CrossRef]

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009).
[CrossRef]

Sens. Actuators B Chem. (1)

K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010).
[CrossRef]

Spectrochim. Acta B (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001).
[CrossRef]

Spectrosc. Lett. (1)

Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Λ signals and their fitting curves with different modulation indices, where ΔvL and ΔvG represent the HWHM of the Lorentzian and Gaussian profiles, respectively, (a), (b) and (c) are the simulation results of Gaussian, Voigt and Lorentzian profile, respectively, (a1), (b1) and (c1) are the fitting residuals between Λ3 signals and their fitting curves with different profiles.

Fig. 2
Fig. 2

The Λ signals with different modulation indices under overlapping conditions, (a) is the Λ signals and their fitting curves, (b) and (c) are the fitting residuals.

Fig. 3
Fig. 3

CO2 and H2O absorption lines near 6981 cm–1, (a) is line strength at 296K, and (b) is the SA profiles (T = 296K P = 100mbar, L = 120.0cm, XCO2 = 20.0%, XH2O = 3.0%).

Fig. 4
Fig. 4

Schematic of the experimental setup used for measuring IA of CO2 and H2O molecules under low absorption.

Fig. 5
Fig. 5

Laser intensities, X and Y axes of the 1st harmonic with different modulation depths of the line A of CO2 (a = 0, 0.89 × 10−2, 1.78 × 10−2, 2.67 × 10−2, 3.56 × 10−2, and 4.45 × 10−2 cm–1).

Fig. 6
Fig. 6

Experimental results of DAS and proposed method (a = 0, 0.89 × 10−2, 1.78 × 10−2, 2.67 × 10−2, 3.56 × 10−2, and 4.45 × 10−2 cm–1), (a) is the simulation results according to the experimental conditions, and (b) is the fitting curves of the experimental data.

Fig. 7
Fig. 7

Experimental results of Stewart’s and proposed methods (a = 0.54 × 10−2, and 2.67 × 10−2 cm–1), (a) is the simulation results according to the experimental conditions, and (b) is the fitting curves of the experimental data.

Fig. 8
Fig. 8

Λ signals and their fitting curves under lower absorption and asymmetrical conditions, (a) is for line A of CO2, and (b) is for lines B and C of H2O.

Tables (3)

Tables Icon

Table 1 Integrated Values of the Λ Signals with Different Modulation Indices in Figs. 1(a)1(c)

Tables Icon

Table 2 Spectroscopy Constants for the Selected Lines, Data Are Taken from HITRAN 2008 (296K)

Tables Icon

Table 3 Measurement Results of Integrated Values and CO2 Partial Pressure (theoretical IA is 3.647 × 10−3cm–1)

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

X= + α( v )dv PS( T )L = A PS( T )L ,
Y= GΔI 2 [ 1+( H 0 H 2 2 ) ]sinψ,
Y back = GΔI 2 sinψ.
Λ=1 Y Y back = H 0 H 2 2 .
α( v ¯ +acosθ )=α( v ¯ )+ n=1 α ( n ) ( v ¯ ) ( acosθ ) n n! .
{ H 0 =α( v ¯ )+ α ( 2 ) ( v ¯ ) a 2 4 + α ( 4 ) ( v ¯ ) a 4 64 + α ( 6 ) ( v ¯ ) a 6 2304 +... H 2 = α ( 2 ) ( v ¯ ) a 2 4 + α ( 4 ) ( v ¯ ) a 4 48 + α ( 6 ) ( v ¯ ) a 6 1536 +....
Λ=α( v ¯ )+ n=1 1 n+1 ( 1 n! ) 2 ( a 2 ) 2n α ( 2n ) ( v ¯ ).
Λd v ¯ = α( v ¯ )d v ¯ + n=1 1 n+1 ( 1 n! ) 2 ( a 2 ) 2n α ( 2n ) ( v ¯ )d v ¯ ,
A= α( v ¯ )d v ¯ = Λd v ¯ ,
f( v ¯ )= p=1 n a p exp[ - ( v ¯ v 0 ) 2 c p 2 ] + q=1 n a q ( v ¯ v 0 ) 2 + c q 2 ,
A= - Λd v ¯ = - f( v ¯ )d v ¯ = p=1 n a p c p π + q=1 n a q c q π.
SNR= max( Λ signal ) 3 σ noise
{ v= v ¯ +acos( ωt+η ), I 0 = I ¯ +ΔIcos( ωt+η+ψ ),
I t I 0 =exp[ α( v ¯ +acosθ ) ]1α( v ¯ +acosθ )=1 k=0 H k cos( kωt ) ,
{ H 0 = 1 2π π +π α( v ¯ +acosθ ) dθ H k = 1 π π +π α( v ¯ +acosθ ) coskθdθ, k=1,2...
I t = C 00 + k=1 [ C k1 cos( kωt )+ C k2 sin( kωt ) ] ,
{ C 00 = I ¯ ( 1 H 0 ) ΔI 2 H 1 cosψ, C 11 = I ¯ H 1 +ΔI( 1 H 0 H 2 2 )cosψ, C 12 =ΔI( 1+ H 0 H 2 2 )sinψ, C k1 = I ¯ H k ΔI 2 ( H k1 + H k+1 )cosψ, C k2 = ΔI 2 ( H k1 H k+1 )sinψ.
{ R X =cos( ωt+β ), R Y =sin( ωt+β ).
{ X= G 2 { C 11 cos( η-β )+ C 12 sin( ηβ ) }, Y= G 2 { C 11 sin( η-β )+ C 12 cos( ηβ ) }.
Y= G 2 C 12 = GΔI 2 [ 1+( H 0 H 2 2 ) ]sinψ.
α( v ¯ )= α G ( v ¯ ) α L ( v ¯ )=Q ln2a π 3/2 - exp[ ln2 ( v ' v 0 ) 2 / Δ G 2 ] ( v ¯ - v ' ) 2 + Δ L 2 d v ' ,
Δv=0.5346Δ v L + 0.2166Δ v L 2 +Δ v G 2 .
+ α ( 2n ) ( v ¯ )dv = + [ α G ( v ¯ ) α L ( v ¯ )] (2n) d v ¯ = α G ( v ¯ ) (2n1) + α L ( v ¯ )d v ¯ .
- + α L ( v ¯ )d v ¯ =0 + α ( 2n ) ( v ¯ )d v ¯ =0

Metrics