Abstract

We demonstrate a remarkable enhancement of isotropic radiation via radially anisotropic zero-index metamaterial (RAZIM). The radiation power can be enhanced by an order of magnitude when a line source and a dielectric particle is enclosed by a RAZIM shell. Based on the extended Mie theory, we illustrate that the basic physics of this isotropic radiation enhancement lies in the confinement of higher order anisotropic modes by the RAZIM shell. The confinement results in some high field regions within the RAZIM shell and thus enables strong scattering from the dielectric particle therein, giving rise to a giant amplification of isotropic radiation out of the system. The influence of the loss inherent in the RAZIM shell is also examined. It is found that the attenuation of omnidirectional power enhancement due to the loss in the RAZIM can be compensated by gain particles.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw Hill, 2002).
  2. C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954).
    [CrossRef]
  3. H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proc. IRE39, 970 (1951).
  4. Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
    [CrossRef]
  5. T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989).
    [CrossRef]
  6. R. Bancroft, “Design parameters of an omnidirectional planar microstrip antenna,” Microw. Opt. Technol. Lett.47, 414–418 (2005).
    [CrossRef]
  7. H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
    [CrossRef]
  8. J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
    [CrossRef]
  9. S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
    [CrossRef]
  10. R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991).
    [CrossRef]
  11. S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
    [CrossRef]
  12. M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002).
    [CrossRef]
  13. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  14. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
    [CrossRef] [PubMed]
  15. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
    [CrossRef] [PubMed]
  16. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
    [CrossRef] [PubMed]
  17. N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
    [CrossRef]
  18. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006).
    [CrossRef]
  19. B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
    [CrossRef] [PubMed]
  20. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
    [CrossRef]
  21. R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
    [CrossRef] [PubMed]
  22. M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008).
    [CrossRef]
  23. Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
    [CrossRef]
  24. Y. Jin and S. L. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18, 16587–16593 (2010).
    [CrossRef] [PubMed]
  25. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004).
    [CrossRef]
  26. M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007).
    [CrossRef]
  27. X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
    [CrossRef] [PubMed]
  28. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
    [CrossRef]
  29. Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
    [CrossRef]
  30. Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
    [CrossRef]
  31. Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
    [CrossRef]
  32. W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
    [CrossRef]
  33. Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.
  34. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007).
    [CrossRef]
  35. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
    [CrossRef] [PubMed]
  36. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
    [CrossRef]
  37. S. M. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
    [CrossRef]
  38. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
    [CrossRef]
  39. J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
    [CrossRef]
  40. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
    [CrossRef]
  41. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
    [CrossRef]
  42. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011).
    [CrossRef]
  43. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
    [CrossRef]
  44. A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012).
    [CrossRef]
  45. Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
    [CrossRef] [PubMed]
  46. W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
    [CrossRef]
  47. Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
    [CrossRef]
  48. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables(Dover, 1964).
  49. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).
  50. Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
    [CrossRef]
  51. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  52. S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
    [CrossRef] [PubMed]
  53. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
    [CrossRef] [PubMed]
  54. S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010).
    [CrossRef]
  55. S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011).
    [CrossRef]
  56. S. Arslanagic, “Power flow in the interior and exterior of cylindrical coated nanoparticles,” Appl. Phys. A109, 921–925 (2012).
    [CrossRef]

2013

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
[CrossRef]

2012

Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
[CrossRef] [PubMed]

S. M. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[CrossRef]

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012).
[CrossRef]

Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
[CrossRef] [PubMed]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
[CrossRef]

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

S. Arslanagic, “Power flow in the interior and exterior of cylindrical coated nanoparticles,” Appl. Phys. A109, 921–925 (2012).
[CrossRef]

2011

S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011).
[CrossRef]

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
[CrossRef]

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

2010

Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
[CrossRef]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010).
[CrossRef]

Y. Jin and S. L. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18, 16587–16593 (2010).
[CrossRef] [PubMed]

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
[CrossRef]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
[CrossRef]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
[CrossRef]

2009

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
[CrossRef]

2008

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
[CrossRef]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008).
[CrossRef]

2007

M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007).
[CrossRef]

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

2006

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006).
[CrossRef]

2005

R. Bancroft, “Design parameters of an omnidirectional planar microstrip antenna,” Microw. Opt. Technol. Lett.47, 414–418 (2005).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

2004

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004).
[CrossRef]

2002

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
[CrossRef]

M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

1993

S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
[CrossRef]

1991

R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991).
[CrossRef]

1989

T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989).
[CrossRef]

1954

C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954).
[CrossRef]

1951

H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proc. IRE39, 970 (1951).

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables(Dover, 1964).

Ahn, J.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

Aradian, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012).
[CrossRef]

Arslanagic, S.

S. Arslanagic, “Power flow in the interior and exterior of cylindrical coated nanoparticles,” Appl. Phys. A109, 921–925 (2012).
[CrossRef]

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011).
[CrossRef]

S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010).
[CrossRef]

Balsley, B. B.

T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989).
[CrossRef]

Bancroft, R.

R. Bancroft, “Design parameters of an omnidirectional planar microstrip antenna,” Microw. Opt. Technol. Lett.47, 414–418 (2005).
[CrossRef]

Belov, P. A.

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Boukamp, C. J.

C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954).
[CrossRef]

Capolino, F.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

Casimir, H. B. G.

C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954).
[CrossRef]

Chan, C. T.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Chen, H.

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011).
[CrossRef]

Chen, H. Y.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

Chen, L.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
[CrossRef]

Chen, S. L.

S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
[CrossRef]

Chen, X.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

Chen, Z. C.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Cheng, Q.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
[CrossRef]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

Chong, T. W.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Compton, R. C.

R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991).
[CrossRef]

Cui, T. J.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
[CrossRef]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Cummer, S. A.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

DeLisio, M. P.

M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002).
[CrossRef]

Della Villa, A.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
[CrossRef]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006).
[CrossRef]

Engheta, Nader

M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007).
[CrossRef]

Enoch, S.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

Feng, S. M.

S. M. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[CrossRef]

Galdi, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

Gao, L.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
[CrossRef]

Garcia, N.

N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
[CrossRef]

Gong, Y. D.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Guerin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

Halterman, K.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
[CrossRef]

Hand, T.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

Hang, Z. H.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Hao, J.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
[CrossRef]

He, S. L.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
[CrossRef]

Y. Jin and S. L. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18, 16587–16593 (2010).
[CrossRef] [PubMed]

Hong, M. H.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Hou, B.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

Huang, D.

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Huang, X. Q.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Huang, Z.

Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
[CrossRef] [PubMed]

Huangfu, J. T.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Itoh, T.

S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
[CrossRef]

Jang, H.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

Jiang, T.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
[CrossRef]

Jin, Y.

Y. Jin and S. L. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18, 16587–16593 (2010).
[CrossRef] [PubMed]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
[CrossRef]

Judasz, T. J.

T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989).
[CrossRef]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Kong, J. A.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Koschny, T.

Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
[CrossRef] [PubMed]

Kraus, J. D.

J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw Hill, 2002).

Lai, Y.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Lee, B.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

Lee, J. W.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

Lim, J. H.

Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
[CrossRef]

Lin, J. S.

S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
[CrossRef]

Lin, K. H.

S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
[CrossRef]

Liu, R. P.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Liu, Y.

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

Luo, J.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

Ma, Y. G.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

Malureanu, R.

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

Marhefka, R. J.

J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw Hill, 2002).

Mathis, H. F.

H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proc. IRE39, 970 (1951).

Mittra, R.

S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
[CrossRef]

Mock, J. J.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

Mohsen, R.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Moon, H.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

Nguyen, V. C.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
[CrossRef]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Ni, Y. X.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
[CrossRef]

Nogi, S.

S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
[CrossRef]

Ong, C. K.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

Pierro, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

Ponizovskaya, E. V.

N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
[CrossRef]

Premaratne, M.

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
[CrossRef]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
[CrossRef]

Qi, M. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

Qiu, C. W.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
[CrossRef]

Qiu, M.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
[CrossRef]

Ran, L. X.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Rukhlenko, I. D.

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
[CrossRef]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
[CrossRef]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shen, L. F.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Silveirinha, M.

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006).
[CrossRef]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008).
[CrossRef]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
[CrossRef]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

Smith, D. R.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Soukoulis, C. M.

Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
[CrossRef] [PubMed]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables(Dover, 1964).

Tayeb, G.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

Veltri, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012).
[CrossRef]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

Wang, G. M.

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

Wang, N.

Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
[CrossRef]

Wang, P.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Xiao, John Q.

N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
[CrossRef]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Xu, H. X.

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

Xu, P.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

Xu, Y.

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011).
[CrossRef]

Xu, Z. M.

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

Yan, W.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
[CrossRef]

York, R. A.

M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002).
[CrossRef]

R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991).
[CrossRef]

Young, M.

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Yuan, H.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Yuan, Y.

Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
[CrossRef]

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Zhang, P.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
[CrossRef]

Zheng, H. H.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Zhu, W. R.

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
[CrossRef]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
[CrossRef]

Ziolkowki, R. W.

S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011).
[CrossRef]

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004).
[CrossRef]

Adv. Mater.

Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012).
[CrossRef]

Appl. Phys. A

S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011).
[CrossRef]

S. Arslanagic, “Power flow in the interior and exterior of cylindrical coated nanoparticles,” Appl. Phys. A109, 921–925 (2012).
[CrossRef]

Appl. Phys. Lett.

J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012).
[CrossRef]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010).
[CrossRef]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011).
[CrossRef]

W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013).
[CrossRef]

Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009).
[CrossRef]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011).
[CrossRef]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012).
[CrossRef]

N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002).
[CrossRef]

Electron. Lett.

S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009).
[CrossRef]

Europhys. Lett.

Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007).
[CrossRef]

IEEE Trans. Antennas and Propagat.

T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991).
[CrossRef]

S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993).
[CrossRef]

M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002).
[CrossRef]

J. Appl. Phys.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009).
[CrossRef]

J. Opt.

S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010).
[CrossRef]

J. Phys. D: Appl. Phys.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010).
[CrossRef]

Microw. Opt. Technol. Lett.

R. Bancroft, “Design parameters of an omnidirectional planar microstrip antenna,” Microw. Opt. Technol. Lett.47, 414–418 (2005).
[CrossRef]

Nat. Mater.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011).
[CrossRef] [PubMed]

Nature (London)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010).
[CrossRef]

Opt. Express

Phys. Rev. A

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008).
[CrossRef]

Phys. Rev. B

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007).
[CrossRef]

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007).
[CrossRef]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008).
[CrossRef]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010).
[CrossRef]

Phys. Rev. B,

M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007).
[CrossRef]

Phys. Rev. E

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004).
[CrossRef]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008).
[CrossRef]

Phys. Rev. Lett.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006).
[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002).
[CrossRef] [PubMed]

S. M. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012).
[CrossRef]

Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012).
[CrossRef] [PubMed]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005).
[CrossRef] [PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010).
[CrossRef]

Physica

C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954).
[CrossRef]

Plamonics

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010).
[CrossRef]

Proc. IRE

H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proc. IRE39, 970 (1951).

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Sensors

S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011).
[CrossRef] [PubMed]

Other

J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw Hill, 2002).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables(Dover, 1964).

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic illustration showing the radiation enhancement system consisting of a RAZIM shell covering (a) a line source only and (b) both a line source and a dielectric rod. The shell center, the line source position, and the dielectric rod position are denoted, respectively, by O, S and D. The medium inside and outside the shell is vacuum. The inner and outer shell radii are a and b, respectively. The radius of the dielectric rod is rd, while |OD| = d and |OS| = s.

Fig. 2
Fig. 2

(a) The electric field amplitude |Ez| pattern inside the RAZIM shell for the configuration in Fig. 1(a), (b) the 0-th order partial wave amplitude |D0| is plotted as the function of the dielectric rod position (xd, yd). The whiteout region denotes the area that the dielectric rod can not reach. The line source is located at (0.1, 0). The parameters of the system are a = 0.5, b = 1, rd = 0.15, μr = 0.01, μϕ = 1, εz = 1, εd = 2, and μd = 1.

Fig. 3
Fig. 3

The normalized radiating power Ps/Ps0 is plotted as the function of the dielectric rod position xd. The line source is fixed at (0.1, 0) and (0, 0), respectively, for panels (a) and (b). The blue dashed line and the red solid line visualize the radiating power Pwo and Pwi, corresponding to the case without and with the RAZIM shell, respectively. All the other parameters are the same as those in Fig. 2.

Fig. 4
Fig. 4

The polar-plot of the normalized irradiance I/I0. The red solid (blue dash) line corresponds to the result Iwi/4 (Iwo) for the system with (without) the RAZIM shell. The green dash-dot line corresponds to the result I w i N for the system with RAZIM shell but without the rod D. The dielectric rod is placed at (−0.24, 0) and all the other parameters are the same as those in Fig. 3(a).

Fig. 5
Fig. 5

(a) The normalized radiating power Ps/Ps0 is plotted as the function of the position xd of the particle with εd = 2.5−0.5i (solid lines) and εd = 2.5 (dashed lines) for the system with (red lines) and without (blue lines) the RAZIM shell, respectively. The line source is fixed at (0.1, 0). (b) The corresponding normalized iiradiance I/I0 is plotted as the function of the polar angle. The red (blue) solid line corresponds to the result I w i A ( I w o A ) for the system with (without) the RAZIM shell and the gain particle modeled by εd = 2.5 − 0.5i. The red (blue) dashed line corresponds to the result Iwi (Iwo) for the system with (without) the RAZIM shell and the dielectric particle of εd = 2.5. The green dash-dot line is for the system with the RAZIM shell but without the particle inside. The particle with the radius rd = 0.15 is placed at (−0.2, 0). The other parameters are a = 0.5, b = 1, λ = 1, μr = 0.01 + 0.005i, μϕ = 1 + 0.005i, and εz = 2 + 0.005i.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ = ε 0 ( r ^ r ^ ε r + ϕ ^ ϕ ^ ε ϕ + z ^ z ^ ε z ) , μ ¯ = μ 0 ( r ^ r ^ μ r + ϕ ^ ϕ ^ μ ϕ + z ^ z ^ μ z ) ,
E z = m [ B m J ν ( k s r ) + C m H ν ( k s r ) ] e im ϕ , a r b ,
i ω μ r μ 0 H r = 1 r E z ϕ , i ω μ ϕ μ 0 H ϕ = E z r ,
E z = H 0 ( k | r l s | ) = m J m ( k s ) H m ( k r ) e im ϕ , r > s , E z = H 0 ( k | r l s | ) = m H m ( k s ) J m ( k r ) e im ϕ , r < s ,
E z = m [ A m J m ( k r ) + J m ( k d ) H m ( k r ) ] e im ϕ , s < r a , E z = m D m H m ( k r ) e im ϕ , r b ,
B m = q m C m , D m = p m C m ,
A m = q m J m ( k s ) , C m = p m J m ( k s ) ,
p m = k s H ν ( k s b ) J ν ( k s b ) k s H ν ( k s b ) J ν ( k s b ) k s H m ( k b ) J ν ( k s b ) k μ ϕ H m ( k b ) J β ( k s b ) ,
q m = k μ ϕ H ν ( k s b ) H m ( k b ) k s H ν ( k s b ) H m ( k b ) k s H m ( k b ) J ν ( k s b ) k μ ϕ H m ( k b ) J ν ( k s b ) ,
p m = k μ ϕ H m ( k a ) J m ( k a ) k μ ϕ H m ( k a ) J m ( k a ) k μ ϕ [ H ν ( k s a ) + q m J ν ( k s a ) ] J m ( k a ) k s [ H ν ( k s a ) + q m J ν ( k s a ) ] J m ( k a ) ,
q m = k s H m ( k a ) [ H ν ( k s a ) + q m J ν ( k s a ) ] k μ ϕ H m ( k a ) [ H ν ( k s a ) + q m J ν ( k s a ) ] k μ ϕ [ H ν ( k s a ) + q m J ν ( k s a ) ] J m ( k a ) k s [ H ν ( k s a ) + q m J ν ( k s a ) ] J m ( k a ) .
A m = q m [ J m ( k s ) + E m ] , C m = p m [ J m ( k s ) + E m ] ,
E z i = m T m J m ( k | r l d | ) e im ϕ , | r l d | < r d ,
E z s = m S m H m ( k | r l d | ) e im ϕ , | r l d | > r d ,
T m = b m ( R m + I m ) , S m = a m ( R m + I m ) ,
I m = H m ( k l ) e in ϕ ,
R m = n A m + n J n ( k d ) e in ϕ c ,
S m = n E m + n J n ( k d ) e in ϕ c ,
b m = k μ d J m ( k r d ) H m ( k r d ) k μ d J m ( k r d ) H m ( k r d ) k d J m ( k d r d ) H m ( k r d ) k μ d H m ( k r d ) J m ( k d r d ) ,
a m = k μ d J m ( k r d ) J m ( k d r d ) k d J m ( k r d ) J m ( k d r d ) k d J m ( k d r d ) H m ( k r d ) k μ d H m ( k r d ) J m ( k d r d ) ,
n ( 1 a m q n ) J n m ( k c ) e i ( n m ) ϕ c E n = n a m q n J n ( k d ) J n m ( k c ) e i ( n m ) ϕ c + a m I m .
E z D 0 H 0 ( k r ) = [ J 0 ( k s ) + E 0 ] H 0 ( k r ) .
P s = L S e r d l , with S = 1 2 Re [ E × H * ] ,
P w i 2 | D 0 | 2 ω μ 0 .
P w o = 2 m | a m H m ( k l ) + J m ( k l ) | 2 ω μ 0 .

Metrics