Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

P. Berini and I. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics6, 16–23 (2012).

[CrossRef]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012).

[CrossRef]

N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler,” Opt. Comm.285, 1555–1559 (2012).

[CrossRef]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011).

[CrossRef]

Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011).

[CrossRef]

A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical theory of optical bistability in plasmonic nanoresonators,” J. Opt. Soc. Am. B28, 2820–2826 (2011).

[CrossRef]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics4, 83–90 (2010).

[CrossRef]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009).

[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structrues,” Opt. Express19, 9594–9599 (2009).

[CrossRef]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev.2, 125–135 (2008).

[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).

[CrossRef]
[PubMed]

Q. H. Mao and J. W. Y. Lit, “Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities,” IEEE Photon. Technol. Lett.14, 1252–1254 (2002).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).

[CrossRef]
[PubMed]

P. Berini and I. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics6, 16–23 (2012).

[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics4, 83–90 (2010).

[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007).

[CrossRef]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).

[CrossRef]
[PubMed]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).

[CrossRef]
[PubMed]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics4, 83–90 (2010).

[CrossRef]

N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler,” Opt. Comm.285, 1555–1559 (2012).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007).

[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011).

[CrossRef]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009).

[CrossRef]

Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011).

[CrossRef]

R. S. Irving, Integers, Polynomials, and Rings (Springer, 2004).

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011).

[CrossRef]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

P. Berini and I. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics6, 16–23 (2012).

[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structrues,” Opt. Express19, 9594–9599 (2009).

[CrossRef]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009).

[CrossRef]

Q. H. Mao and J. W. Y. Lit, “Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities,” IEEE Photon. Technol. Lett.14, 1252–1254 (2002).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012).

[CrossRef]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012).

[CrossRef]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

Q. H. Mao and J. W. Y. Lit, “Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities,” IEEE Photon. Technol. Lett.14, 1252–1254 (2002).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).

[CrossRef]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler,” Opt. Comm.285, 1555–1559 (2012).

[CrossRef]

Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011).

[CrossRef]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009).

[CrossRef]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012).

[CrossRef]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011).

[CrossRef]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev.2, 125–135 (2008).

[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev.2, 125–135 (2008).

[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).

[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012).

[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009).

[CrossRef]

Q. H. Mao and J. W. Y. Lit, “Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities,” IEEE Photon. Technol. Lett.14, 1252–1254 (2002).

[CrossRef]

D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010).

[CrossRef]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev.2, 125–135 (2008).

[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011).

[CrossRef]
[PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).

[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics4, 83–90 (2010).

[CrossRef]

P. Berini and I. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics6, 16–23 (2012).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).

[CrossRef]
[PubMed]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009).

[CrossRef]

N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler,” Opt. Comm.285, 1555–1559 (2012).

[CrossRef]

Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011).

[CrossRef]

L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012).

[CrossRef]

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structrues,” Opt. Express19, 9594–9599 (2009).

[CrossRef]

X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011).

[CrossRef]
[PubMed]

H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011).

[CrossRef]
[PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009).

[CrossRef]

H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011).

[CrossRef]
[PubMed]

G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011).

[CrossRef]
[PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).

[CrossRef]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007).

[CrossRef]

J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011).

[CrossRef]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013).

[CrossRef]

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).

R. S. Irving, Integers, Polynomials, and Rings (Springer, 2004).