We propose a portable hologram capture system based on integral imaging. An integral imaging camera with an integrated micro lens array captures spatio-angular light ray distribution of the three-dimensional scene under incoherent illumination. The captured light ray distribution is then processed to synthesize corresponding hologram. Experimental results show that the synthesized hologram is optically reconstructed successfully, demonstrating accommodation and motion parallax of the reconstructed three-dimensional scene.

© 2013 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett.32(8), 912–914 (2007).
    [CrossRef] [PubMed]
  2. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt.48(34), H120–H136 (2009).
    [CrossRef] [PubMed]
  3. Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional fourier spectra of real existing objects,” Opt. Lett.28(24), 2518–2520 (2003).
    [CrossRef] [PubMed]
  4. Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express19(7), 6109–6118 (2011).
    [CrossRef] [PubMed]
  5. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express17(8), 6320–6334 (2009).
    [CrossRef] [PubMed]
  6. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt.45(17), 4026–4036 (2006).
    [CrossRef] [PubMed]
  7. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express19(10), 9086–9101 (2011).
    [CrossRef] [PubMed]
  8. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  9. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  10. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  11. H. Navarro, J. C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express20(2), 890–895 (2012).
    [CrossRef] [PubMed]
  12. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt.9(3), 695–700 (1970).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

2009 (3)

2007 (1)

2006 (1)

2003 (1)

1997 (1)

1970 (1)

Arai, J.

Baasantseren, G.

Barreiro, J. C.

Brooker, G.

Burckhardt, C. B.

Hong, K.

Hoshino, H.

Itoh, M.

Javidi, B.

Katz, B.

Kim, M.-S.

Kim, N.

Lee, B.

Martínez-Corral, M.

Mishina, T.

Navarro, H.

Okano, F.

Okui, M.

Park, J.-H.

Rivenson, Y.

Rosen, J.

Saavedra, G.

Sando, Y.

Shaked, N. T.

Stern, A.

Wakunami, K.

Yamaguchi, M.

Yatagai, T.

Yuyama, I.

Appl. Opt. (5)

Opt. Express (4)

Opt. Lett. (2)

Other (1)

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).

Supplementary Material (2)

» Media 1: AVI (3942 KB)     
» Media 2: AVI (8181 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (10)

Fig. 1
Fig. 1

Optical configuration of the proposed camera.

Fig. 2
Fig. 2

Sub-image array synthesis.

Fig. 3
Fig. 3

Fourier hologram synthesis.

Fig. 4
Fig. 4

Implemented camera with the micro lens array

Fig. 5
Fig. 5

Concept of synthetic aperture technique.

Fig. 6
Fig. 6

Experimental setup (a) Integral imaging camera with the aperture, (b) 3D scene.

Fig. 7
Fig. 7

Captured images (a) Single capture (94 × 67 lens images of 25 × 25 pixel count), (b) Synthetic aperture with 5 × 5 captures (94 × 67 lens images of 125 × 125 pixel count).

Fig. 8
Fig. 8

Sub-images synthesized using Fig. 7(b). (a) All 125 × 125 sub-images of 94 × 67 pixel count. Among these, only 20 × 16 sub-images (represented in yellow box) selected regularly across whole array were used in the hologram synthesis, (b) Selected 20 × 16 sub-images.

Fig. 9
Fig. 9

Phase distribution of synthesized hologram (1880 × 1072 pixel count).

Fig. 10
Fig. 10

Optical reconstruction (a) Accommodation (Media 1), (b) Motion parallax (Media 2).

Tables (1)

Tables Icon

Table 1 Experimental Setup