Abstract

A full-duplex lightwave transport system employing wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques, as well as optical free-space transmission scheme is proposed and experimentally demonstrated. Over an 80-km single-mode fiber (SMF) and 2.4 m optical free-space transmissions, impressive bit error rate (BER) performance is obtained for long-haul fiber link and finite free-space transmission distance. Such a full-duplex lightwave transport system based on long-haul SMF and optical free-space transmissions has been successfully demonstrated, which cannot only present its advancement in lightwave application, but also reveal its simplicity and convenience for the real implementation. Our proposed systems are suitable for the lightwave communication systems in wired and wireless transmissions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Li, H. S. Su, C. H. Chang, H. H. Lu, P. Y. Wu, C. Y. Chen, and C. L. Ying, “Generation and transmission of BB/MW/MMW signals by cascading PM and MZM,” J. Lightwave Technol.30(3), 298–303 (2012).
    [CrossRef]
  2. C. Y. Li, H. S. Su, C. Y. Chen, H. H. Lu, H. W. Chen, C. H. Chang, and C. H. Jiang, “Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals,” Opt. Express19(15), 14000–14007 (2011).
    [CrossRef] [PubMed]
  3. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express21(1), 1203–1208 (2013).
    [CrossRef] [PubMed]
  4. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
    [CrossRef]
  5. C. W. Chow and Y. H. Lin, “Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation,” Opt. Express20(8), 9243–9248 (2012).
    [CrossRef] [PubMed]
  6. Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in-door visible light communication system,” In Proc. Opt. Fiber Commun. (OFC), JWA83 (2011).
  7. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” In Proc. Opt. Fiber Commun. (OFC), OTh1G4 (2013).
  8. C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
    [CrossRef]
  9. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500 Mbps WDM visible light communication systems,” Opt. Express20(9), 9919–9924 (2012).
    [CrossRef] [PubMed]
  10. F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm.27(8), 1507–1519 (2009).
    [CrossRef]
  11. J. Fadlullah and M. Kavehrad, “Indoor high-bandwidth optical wireless links for sensor networks,” J. Lightwave Technol.28(21), 3086–3094 (2010).
  12. D. C. O'Brien, “Visible light communications: challenges and potential,” In Proc. IEEE Photon. Conf., 365–366 (2011).
  13. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
    [CrossRef]
  14. H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett.16(2), 602–604 (2004).
    [CrossRef]
  15. M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett.12(8), 1094–1096 (2000).
    [CrossRef]
  16. M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” J. Lightwave Technol.17(10), 1782–1792 (1999).
    [CrossRef]

2013 (1)

2012 (4)

2011 (3)

C. Y. Li, H. S. Su, C. Y. Chen, H. H. Lu, H. W. Chen, C. H. Chang, and C. H. Jiang, “Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals,” Opt. Express19(15), 14000–14007 (2011).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

2010 (1)

2009 (1)

F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm.27(8), 1507–1519 (2009).
[CrossRef]

2004 (1)

H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett.16(2), 602–604 (2004).
[CrossRef]

2000 (1)

M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett.12(8), 1094–1096 (2000).
[CrossRef]

1999 (1)

Alsaadi, F.

F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm.27(8), 1507–1519 (2009).
[CrossRef]

Chang, C. H.

Chen, C. Y.

Chen, H. W.

Chi, N.

Chow, C. W.

Elmirghani, J.

F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm.27(8), 1507–1519 (2009).
[CrossRef]

Fadlullah, J.

Huang, P. Y.

Jiang, C. H.

Kavehrad, M.

Li, C. Y.

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

Lin, H. C.

Lin, W. Y.

Lin, Y. H.

Lin, Y. P.

Liu, Y.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Liu, Y. F.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Liu, Y. L.

H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett.16(2), 602–604 (2004).
[CrossRef]

Lu, H. H.

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

Ott, D. M.

M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett.12(8), 1094–1096 (2000).
[CrossRef]

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” J. Lightwave Technol.17(10), 1782–1792 (1999).
[CrossRef]

Phillips, M. R.

M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett.12(8), 1094–1096 (2000).
[CrossRef]

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” J. Lightwave Technol.17(10), 1782–1792 (1999).
[CrossRef]

Shang, H.

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

Su, H. S.

Tsang, H. K.

Tzeng, S. J.

H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett.16(2), 602–604 (2004).
[CrossRef]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

Wang, Y.

Wu, H. W.

Wu, P. Y.

Yeh, C. H.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

Ying, C. L.

Yu, J.

Electron. Lett. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of LED visible light communication system integrated to the main electricity network,” Electron. Lett.47(15), 867–868 (2011).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

F. Alsaadi and J. Elmirghani, “Performance evaluation of 2.5 Gbit/s and 5 Gbit/s optical wireless systems employing a two dimensional adaptive beam clustering method and imaging diversity detection,” IEEE J. Sel. Areas Comm.27(8), 1507–1519 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photon. Technol. Lett.23(8), 519–521 (2011).
[CrossRef]

H. H. Lu, S. J. Tzeng, and Y. L. Liu, “Intermodulation distortion suppression in a full-duplex radio-on-fiber ring network,” IEEE Photon. Technol. Lett.16(2), 602–604 (2004).
[CrossRef]

M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett.12(8), 1094–1096 (2000).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (5)

Other (3)

D. C. O'Brien, “Visible light communications: challenges and potential,” In Proc. IEEE Photon. Conf., 365–366 (2011).

Y. F. Liu, Y. C. Chang, C. W. Chow, and C. H. Yeh, “Equalization and pre-distorted schemes for increasing data rate in-door visible light communication system,” In Proc. Opt. Fiber Commun. (OFC), JWA83 (2011).

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and H. T. Huang, “3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation,” In Proc. Opt. Fiber Commun. (OFC), OTh1G4 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental configuration of our proposed full-duplex lightwave transport systems employing WDM and optical add-drop multiplexing techniques, and optical free-space transmission scheme.

Fig. 2
Fig. 2

The appropriate wavelengths are dropped by the OADM in AP1 and AP2.

Fig. 3
Fig. 3

(a) The measured down-link BER curves of 1 Gbps data channel from the head-end to the AP2, (b) The measured up-link BER curves of 1 Gbps data channel from the AP1 to the head-end.

Fig. 4
Fig. 4

(a) The received signals of 1 Gbps and 10 Gbps data channels with respect to different distance from beam center. (b) The received signals of 1 Gbps and 10 Gbps data channels with respect to different beam radius.

Fig. 5
Fig. 5

The distance from beam center and beam radius under different data stream, at an error-free operation of 10−9.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d(n)=a(n) e jθ(n)
d er (n)= a er (n) e j θ er (n)
BER= 1 2 erfc( SNR 2 )
XT=10log [ K ad P d P a 1+ K ad P d P a ] 2

Metrics