Abstract

High-Q guided resonance modes in two-dimensional photonic crystals, enable high field intensity in small volumes that can be exploited to realize high performance sensors. We show through simulations and experiments how the Q-factor of guided resonance modes varies with the size of the photonic crystal, and that this variation is due to loss caused by scattering of in-plane propagating modes at the lattice boundary and coupling of incident light to fully guided modes that exist in the homogeneous slab outside the lattice boundary. A photonic crystal with reflecting boundaries, realized by Bragg mirrors with a band gap for in-plane propagating modes, has been designed to suppress these edge effects. The new design represents a way around the fundamental limitation on Q-factors for guided resonances in finite photonic crystals. Results are presented for both simulated and fabricated structures.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992).
    [CrossRef]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
    [CrossRef]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
    [CrossRef]
  4. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
    [CrossRef]
  5. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
    [CrossRef]
  6. C. Chase, Y. Rao, W. Hofmann, and C.-J. Chang-Hasnain, “1550 nm high contrast grating vcsel,” Opt. Express18, 15461–15466 (2010).
    [CrossRef] [PubMed]
  7. W. Hofmann, “Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26, 014011 (2011).
    [CrossRef]
  8. B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
    [CrossRef]
  9. O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
    [CrossRef]
  10. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
    [CrossRef] [PubMed]
  11. B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012).
    [CrossRef]
  12. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
    [CrossRef]
  13. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
    [CrossRef]
  14. R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt.39, 3649–3653 (2000).
    [CrossRef]
  15. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A17, 1241–1249 (2000).
    [CrossRef]
  16. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A18, 1912–1928 (2001).
    [CrossRef]
  17. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
    [CrossRef] [PubMed]
  18. S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express16, 12207–12213 (2008).
    [CrossRef] [PubMed]
  19. Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-q resonator using a subwavelength high-contrast grating,” Opt. Express16, 17282–17287 (2008).
    [CrossRef] [PubMed]
  20. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express20, 1444–1449 (2012).
    [CrossRef] [PubMed]
  21. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
    [CrossRef]
  22. S.-H. Kwon, S. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express12, 5356–5361 (2004).
    [CrossRef] [PubMed]
  23. P. Nedel, X. Letartre, C. Seassal, A. Auffeves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express19, 5014–5025 (2011).
    [CrossRef] [PubMed]
  24. K. Kintaka, T. Majima, K. Hatanaka, J. Inoue, and S. Ura, “Polarization-independent guided-mode resonance filter with cross-integrated waveguide resonators,” Opt. Lett.37, 3264–3266 (2012).
    [CrossRef] [PubMed]
  25. P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
    [CrossRef]
  26. J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light Second Edition (Princeton University Press, 2008). Chapters 5 and 10.
  27. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
    [CrossRef]
  28. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, c. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and moems structures,” J. Lightwave Technol.21, 1691 (2003).
    [CrossRef]
  29. J.-P. Berenger, “Numerical reflection from fdtd-pmls: a comparison of the split pml with the unsplit and cfs pmls,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
    [CrossRef]
  30. J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
    [CrossRef]

2013 (1)

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

2012 (6)

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express20, 1444–1449 (2012).
[CrossRef] [PubMed]

K. Kintaka, T. Majima, K. Hatanaka, J. Inoue, and S. Ura, “Polarization-independent guided-mode resonance filter with cross-integrated waveguide resonators,” Opt. Lett.37, 3264–3266 (2012).
[CrossRef] [PubMed]

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012).
[CrossRef]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

2011 (3)

W. Hofmann, “Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26, 014011 (2011).
[CrossRef]

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

P. Nedel, X. Letartre, C. Seassal, A. Auffeves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express19, 5014–5025 (2011).
[CrossRef] [PubMed]

2010 (2)

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

C. Chase, Y. Rao, W. Hofmann, and C.-J. Chang-Hasnain, “1550 nm high contrast grating vcsel,” Opt. Express18, 15461–15466 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

2008 (2)

2007 (1)

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
[CrossRef]

2006 (1)

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

2004 (2)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

S.-H. Kwon, S. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express12, 5356–5361 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

J.-P. Berenger, “Numerical reflection from fdtd-pmls: a comparison of the split pml with the unsplit and cfs pmls,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

2001 (2)

2000 (2)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992).
[CrossRef]

Akkaya, O.

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

Akkaya, O. C.

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

Auffeves, A.

Awatsuji, Y.

Ben Bakir, B.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Bendickson, J. M.

Berenger, J.-P.

J.-P. Berenger, “Numerical reflection from fdtd-pmls: a comparison of the split pml with the unsplit and cfs pmls,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

Boutami, S.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Boye, R. R.

Brundrett, D. L.

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-q resonator using a subwavelength high-contrast grating,” Opt. Express16, 17282–17287 (2008).
[CrossRef] [PubMed]

Chang-Hasnain, C.-J.

Chase, C.

C. Chase, Y. Rao, W. Hofmann, and C.-J. Chang-Hasnain, “1550 nm high contrast grating vcsel,” Opt. Express18, 15461–15466 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Chua, S.-L.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

Cunningham, B. T.

B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012).
[CrossRef]

Di Cioccio, L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Digonnet, M. J. F.

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

Drouard, E.

Dunn, S. C.

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

Fedeli, J.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Ferrier, L.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Grepstad, J. O.

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

Greve, M.

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

Hatanaka, K.

Hofmann, W.

W. Hofmann, “Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26, 014011 (2011).
[CrossRef]

C. Chase, Y. Rao, W. Hofmann, and C.-J. Chang-Hasnain, “1550 nm high contrast grating vcsel,” Opt. Express18, 15461–15466 (2010).
[CrossRef] [PubMed]

Holst, B.

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

Howe, R. T.

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

Huang, M. C.

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Inoue, J.

Jacob, D. K.

Joannopoulos, J. D.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light Second Edition (Princeton University Press, 2008). Chapters 5 and 10.

Johansen, I.-R.

Johnson, S.

J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light Second Edition (Princeton University Press, 2008). Chapters 5 and 10.

Jung, I. W.

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

Karagodsky, V.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Kaspar, P.

Kern, J.

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

Kim, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

S.-H. Kwon, S. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express12, 5356–5361 (2004).
[CrossRef] [PubMed]

Kim, S.-B.

Kim, S.-K.

Kino, G. S.

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

Kintaka, K.

Kostuk, R. K.

Kwon, S.-H.

Leclercq, J. L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, c. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and moems structures,” J. Lightwave Technol.21, 1691 (2003).
[CrossRef]

Lee, J.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Lee, Y.-H.

Lesuffleur, A.

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
[CrossRef]

Letartre, X.

Lindquist, N. C.

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
[CrossRef]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992).
[CrossRef]

Majima, T.

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-q resonator using a subwavelength high-contrast grating,” Opt. Express16, 17282–17287 (2008).
[CrossRef] [PubMed]

Moharam, M. G.

Mouette, J.

Murata, S.

Nedel, P.

Nishii, J.

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
[CrossRef]

Park, B.

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Provine, J.

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

Qiu, W.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Rahmani, A.

Rao, Y.

Reisinger, T.

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

Rojo-Romeo, P.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Romeo, P. R.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

Seassal, C.

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Shapira, O.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

Solgaard, O.

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

Soljacic, M.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Sudbø, A. S.

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

Ura, S.

Viktorovitch, P.

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992).
[CrossRef]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

Zangar, R. C.

B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012).
[CrossRef]

Zhen, B.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-q resonator using a subwavelength high-contrast grating,” Opt. Express16, 17282–17287 (2008).
[CrossRef] [PubMed]

Zussy, M.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997).
[CrossRef]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009).
[CrossRef]

IEEE Sens. J. (1)

B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J.-P. Berenger, “Numerical reflection from fdtd-pmls: a comparison of the split pml with the unsplit and cfs pmls,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

J. Biophotonics (1)

B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Vac. Sci. and Tech. B (1)

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013).
[CrossRef]

Laser Photon. Rev. (1)

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (4)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

W. Hofmann, “Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26, 014011 (2011).
[CrossRef]

Other (1)

J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light Second Edition (Princeton University Press, 2008). Chapters 5 and 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Lumped element model, based on temporal coupled mode theory, of an infinite photonic crystal with lattice period p < λ, where λ is the wavelength of an incoming plane wave with amplitude i = 1, producing a reflected and transmitted plane wave with amplitude r and t. Coupling to guided resonance modes is associated with a center frequency ω0 and bandwidth γ. (b) Illustration of how the theory is modified to include loss related to edge effects, given by α.

Fig. 2
Fig. 2

(a) Dispersion relation for a homogeneous slab. (b) A square lattice of holes is introduced in the slab, which by folding about π/p introduces guided resonance modes above the light line (blue lines). A zoom-in shows the two lowest frequency guided resonance modes at the Γ-point. (c and d) We consider how a fully guided mode with frequency, ωm, sent in from the side of this lattice, will have an exponentially decreasing amplitude as a function of distance from the lattice boundary. The decrease in amplitude is due to scattering from the holes, which creates an in-plane bad gap at this frequency. (e) Zoom in on a guided resonance mode at the Γ-point for two finite fields with different spacial extent. Going from Δk1 to Δk2, we go to a more localized field.

Fig. 3
Fig. 3

Illustration of the three dimensional FDTD simulation domain. N is the number of periods in a square lattice with period p. The place of origin for the incident waves and its orientation relative to the PC, and the observation point where the field is recorded as a function time, is marked along the z-axis.

Fig. 4
Fig. 4

(a) Simulated transmittance spectrum of a finite crystal composed of N×N holes for N = 10 (red line), N=20 (black line), N = 30 (green line), and an infinite lattice (blue line). The transmittance is given as the ratio between the Fourier transforms of the field recorded in point T (see Fig. 3) as a function of time, and the Fourier transform of the incident pulse. Dips in transmission marked with arrows resulting from coupling to two guided resonance modes are visible, labeled mode A and B. (b) The Q-factor of mode A (red markers) and B (blue markers) has been calculated and plotted as a function of lattice size. The Q-factor has been normalized as Q for the finite lattices divided by Q of the infinite lattice.

Fig. 5
Fig. 5

Full field plots at the center plane of a finite PC consisting of 10×10 holes (N = 10) and 20×20 holes (N = 20), and the field at the center plane in a unit cell of an infinite 2D-PC, resulting from continuous wave FDTD simulations for wavelengths corresponding to the minimum values on the three plots in Fig. 4(a) above 700 nm. The center four unit cells are blown up to better see the field distribution for the two finite PCs.

Fig. 6
Fig. 6

(a) Simulated transmittance spectra of a PC consisting of a square lattice of 10×10 holes (red dashed), and the same hole lattice having in-plane Bragg mirrors at two of its sides. The black line results from the Bragg PC structure with incident polarization parallel to Bragg mirror lines, E0, while the blue line results from an incident polarization perpendicular to the Bragg mirror lines, E90. The transmittance is given as the ratio between the Fourier transforms of the field recorded in point T (see Fig. 3) as a function of time, and the Fourier transform of the incident pulse. The transmittance of the in-plane Bragg mirror is shown with the green line. (b) 3D illustration of the simulated PC, utilizing in-plane Bragg mirrors to trap guided resonance modes in the hole lattice with k-vectors perpendicular to the Bragg mirror lines.

Fig. 7
Fig. 7

Full field plots at the center plane of a PC consisting of 10×10 holes with Bragg mirrors at two of its four boundaries, for an incident field oriented perpendicular (top row) and parallel (bottom row) to the Bragg mirror lines. Plots result from continuous wave FDTD simulations for wavelengths corresponding to the minimum values of the two dips in Fig. 6(a) at 708 nm and 705.9 nm, for the incident light polarized orthogonal and parallel to the Bragg mirror lines respectively.

Fig. 8
Fig. 8

Images taken with a scanning electron microscope of the fabricated structures. (a) Four square hole lattices consisting of 10×10, 25×25, 50×50 and 100×100 holes, with a period of p = 500±2 nm and a hole radius of r = 100±2 nm. (b–e) Four square hole lattices bound by in-plane Bragg mirrors. The 2D hole lattices consist of 10×10 holes, with periods (b) p1 = 450 ± 2 nm, (c) p2 = 474 ± 2 nm, (d) p3 = 500 ± 2 nm and (e) p4 = 526 ± 2 nm, from left to right. They all have a hole radius of r = 100 ± 2 nm. The Bragg mirrors have a line spacing of 250 ± 2 nm and a duty cycle of 50 ± 5 %. All structures are etched in a 150 nm thick Si3N4/SiO2/Si3N4 thin-film stack, suspended on a Si-frame. (f) Illustration of cross section view of a chip after fabrication is finalized.

Fig. 9
Fig. 9

(Right) Optical microscopy image of the four different lattices depicted in Fig. 8(a), recorded by a CCD camera for an incident wavelength of λ = 656 nm. Black boxes have been fitted around each lattice, named S10, S25, S50 and S100. Subscripts denote the square-root of the number of holes in each lattice. A fifth box, S0, has also been included, framing an unstructured area on the membrane. (Left) The experimentally measured transmittance, given as the mean normalized pixel value within each box, is plotted as a function of wavelength. The normalization procedure in described in section Fabrication and experimental setup.

Fig. 10
Fig. 10

(Very right) Optical microscopy images recorded with a CCD camera for two orthogonal polarizations of incident light, at wavelengths λ = 630 nm (top) and 626 nm (bottom), for the Bragg PC structure with period 476 nm (middle). (Left) The experimentally measured transmittance, given as the mean normalized pixel value within each box, is plotted as a function of wavelength. The normalization procedure in described in section Fabrication and experimental setup.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = r d ± r g = r d ( ω ) ± f γ i ( ω ω 0 ) + γ , and
t = t d + t g = t d ( ω ) + f γ i ( ω ω 0 ) + γ ,
f = α ( t d ± r d ) ,
ω k 0 ,

Metrics