Abstract

Due to their wide operating range, silica toroidal whispering gallery mode microresonators have enabled numerous applications from fundamental physics to lasing and sensing. However, the integration of a waveguide with these microresonators has not been achieved which limits their integration with additional on-chip components. Here, we demonstrate a novel approach for monolithically integrating a silica microtoroid with an on-chip waveguide to form a fully integrated microtoroid-waveguide system with quality factors in excess of 4 million. Similar to the conventional toroidal cavities, power-independent operation is demonstrated. UV and temperature sensing experiments are also performed using the monolithically integrated microtoroid-waveguide system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
    [CrossRef] [PubMed]
  2. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
    [CrossRef]
  3. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
    [CrossRef]
  4. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
    [CrossRef] [PubMed]
  5. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
    [CrossRef]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
    [CrossRef]
  7. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
    [CrossRef] [PubMed]
  8. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
    [CrossRef]
  9. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
    [CrossRef] [PubMed]
  10. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000).
    [CrossRef]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  12. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
    [CrossRef] [PubMed]
  13. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
    [CrossRef]
  14. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
    [CrossRef] [PubMed]
  15. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20(20), 22934–22942 (2012).
    [CrossRef] [PubMed]
  16. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  17. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  18. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  19. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
    [CrossRef] [PubMed]
  20. C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002).
    [CrossRef]
  21. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
    [CrossRef] [PubMed]
  22. X. Zhang, M. Harrison, A. Harker, and A. M. Armani, “Serpentine low loss trapezoidal silica waveguides on silicon,” Opt. Express20(20), 22298–22307 (2012).
    [CrossRef] [PubMed]
  23. X. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on silicon,” Opt. Lett.36(15), 3012–3014 (2011).
    [CrossRef] [PubMed]
  24. T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).
  25. L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
    [CrossRef]
  26. A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” in JoVE, (2012), p. e4164.
  27. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
    [CrossRef]
  28. P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
    [CrossRef] [PubMed]
  29. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2010).
  30. T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
    [CrossRef] [PubMed]
  31. A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
    [CrossRef]
  32. B. R. Reddy, I. Kamma, and P. Kommidi, “Optical sensing techniques for temperature measurement,” Appl. Opt.52(4), B33–B39 (2013).
    [PubMed]
  33. L. Wang, B. Zhou, C. Shu, and S. He, “Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor,” Opt. Lett.36(3), 427–429 (2011).
    [CrossRef] [PubMed]
  34. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]
  35. A. Harker, S. Mehrabani, and A. M. Armani, “Ultraviolet light detection using an optical microcavity,” Opt. Lett.38(17), 3422–3425 (2013).
    [CrossRef] [PubMed]
  36. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011).
    [CrossRef] [PubMed]
  37. L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
    [CrossRef] [PubMed]
  38. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
    [CrossRef] [PubMed]
  39. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
    [CrossRef]
  40. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
    [CrossRef] [PubMed]

2013 (3)

2012 (5)

2011 (10)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011).
[CrossRef] [PubMed]

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
[CrossRef] [PubMed]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
[CrossRef] [PubMed]

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

L. Wang, B. Zhou, C. Shu, and S. He, “Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor,” Opt. Lett.36(3), 427–429 (2011).
[CrossRef] [PubMed]

X. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on silicon,” Opt. Lett.36(15), 3012–3014 (2011).
[CrossRef] [PubMed]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

2010 (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

2009 (4)

2008 (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
[CrossRef]

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

2004 (2)

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
[CrossRef]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002).
[CrossRef]

2000 (3)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000).
[CrossRef]

Adibi, A.

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Atabaki, A. H.

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011).
[CrossRef] [PubMed]

Barker, A.

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Barnett, R.

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Biberman, A.

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Cai, C.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002).
[CrossRef]

Choi, H.-S.

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Demler, E. A.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

Dominguez-Juarez, J. L.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
[CrossRef] [PubMed]

Donohue, L. A.

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Finlay-Jones, J. J.

P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
[CrossRef] [PubMed]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Ghulinyan, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Gorman, S.

P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
[CrossRef] [PubMed]

Gorodetsky, M. L.

Grudinin, I. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
[CrossRef]

Guo, L. J.

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002).
[CrossRef]

Hafezi, M.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

Hansuek Lee, T. C.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Harker, A.

Harrison, M.

Hart, P. H.

P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
[CrossRef] [PubMed]

He, L. N.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

He, S.

Hopkins, J.

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Hosseini, E. S.

Hsu, H.-S.

Hu, E.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Ilchenko, V. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
[CrossRef]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Jonasz, M.

Kamma, I.

Kim, W.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Kitamura, R.

Kommidi, P.

Kozyreff, G.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
[CrossRef] [PubMed]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Li, J.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).

Lipson, M.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Lukin, M. D.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

Maker, A. J.

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
[CrossRef]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

Maleki, L.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
[CrossRef]

Martorell, J.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
[CrossRef] [PubMed]

Mehrabani, S.

Michler, P.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Newton, A.

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Ozdemir, S. K.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Painter, O.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Pavesi, L.

Pilon, L.

Prtljaga, N.

Pryamikov, A. D.

Pucker, G.

Ramiro-Manzano, F.

Reddy, B. R.

Rokhsari, H.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
[CrossRef]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

Shaw, M. J.

Shu, C.

Soltani, M.

Spillane, S. M.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Su, S.-Y.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Tang, L.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Taylor, J. M.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

Timurdogan, E.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Vahala, K. J.

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Wang, L.

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011).
[CrossRef] [PubMed]

Watts, M. R.

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Wright, J. B.

Yang, L.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Yoshie, T.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

Zhang, X.

Zhou, B.

Zhu, J. G.

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000).
[CrossRef]

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002).
[CrossRef]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Nat Commun (1)

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011).
[CrossRef] [PubMed]

Nat. Commun (1)

T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).

Nat. Nanotechnol. (1)

L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Nat. Phys. (1)

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011).
[CrossRef]

Nat. Rev. Immunol. (1)

P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011).
[CrossRef] [PubMed]

Nature (2)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. A (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004).
[CrossRef]

Science (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008).
[CrossRef] [PubMed]

Sensors (Basel) (1)

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Other (2)

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2010).

A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” in JoVE, (2012), p. e4164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Renderings and schematics of waveguide and toroid structure (a)/(c) before and (b)/(d) after the laser reflow process. The dotted lines in the renderings indicate the cross sections drawn in the schematics. Purple is silica and gray is silicon. In the present work, h = 12μm, a = 8μm, gap = 3μm D = 70μm, and d = 10μm. After reflow, the initial 3micron gap was decreased to sub-micron.

Fig. 2
Fig. 2

Overview of the fabrication process flow for the integrated microtoroid-waveguide system. (a) Step 1 and (b) Step 2 define the waveguide and ring structures in the 12μm thermal oxide layer. (c) Step 3 undercuts the oxide, elevating it off of the silicon substrate, and (d) Step 4 is the laser reflow process. Between each step, there are a series of sample cleaning procedures, including oxygen plasma, Chrome removal and piranha cleaning.

Fig. 3
Fig. 3

Step 1 in the fabrication process. (a) Pov-Ray rending of Step 1. (b) Optical microscope image showing the result of patterning and etching down 3 μm. (c)/(d)SEM images showing the result of the second Cr deposition. The thickness of Cr on the flat surface is 500nm; however, the thickness of Cr on the sidewall of is only around 50nm.

Fig. 4
Fig. 4

Step 2 in the fabrication process. (a) Pov-Ray rending of Step 2. (b) Optical microscope image showing the top view of the waveguide and ring structures after the second AOE etching. The width of the ring and the bent waveguide are 8μm. The gap between the silica waveguide and the ring is 3μm at this point. (c)/(d) SEM images showing the second photolithography with AZ4620 photoresist protective coating and the Cr wet etching. There is some undercut of the Cr which is normal for wet etching.

Fig. 5
Fig. 5

Step 3 in the fabrication process. (a) Pov-Ray rending of Step 3. (b)/(c)/(d) SEM images showing the XeF2 etching results of the side view of the coupling region of the ring and waveguide, the entire device and the top view of the device.

Fig. 6
Fig. 6

Step 4 in the fabrication process. (a) Pov-Ray rending of Step 4 showing the system in operation with the light from the waveguide coupled into the microtoroid. (b) The endface of the waveguide after the reflow process. (c) The microtoroid and the waveguide are coplanar. The major and minor diameters of the microtoroid are around 70μm and 10μm, respectively. The waveguide also has a diameter of approximately 10μm. The radius of curvature of the waveguide in the coupling region is 20μm. Both the microtoroid and the waveguide have ultra-smooth surfaces resulting from the CO2 laser reflow process. The gap between the waveguide and the microtoroid is reduced to ~500nm because the waveguide and toroid collapse during the reflow process and reflow towards each other.

Fig. 7
Fig. 7

The testing set-up. The tunable laser is coupled into and out of the waveguide using a pair of lensed optical fibers. The testing set-up is controlled using a computer with a series of integrated PCI cards (National Instruments) which are controlled with LabView. The laser scan rate and range are controlled using either a function generator (PCI Func Gen Card) or the general laser communication port (PCI GPIB Card). The transmission signal is recorded on the high speed digitizer/oscilloscope card (PCI Digitizer Card). For the high power measurements, an erbium doped fiber amplifier (EDFA) is integrated inline.

Fig. 8
Fig. 8

Representative quality factor measurements of the integrated microtoroid-waveguide system with Lorentzian fits. (a) At 1300nm, the full width at half maximum (δλ) from the fit is 3.1 × 10−4, yielding a loaded Q value of 4.3 × 106. (b) At 1550nm, the full width half maximum (δλ) from the fit at 1550nm is 4.9 × 10−4, yielding a loaded Q value of 3.2 × 106.

Fig. 9
Fig. 9

As the input power is increased, the resonant wavelength slightly shifts. However, because of the low thermo-optic coefficient of silica, several hundred microwatts of input power, which corresponds to several watts of circulating power, are needed to induce a multi-linewidth shift.

Fig. 10
Fig. 10

The testing set-ups for the detection experiments. (a) The cylindrical heater is integrated directly under the integrated resonator, and the thermocouple is adjacent to the sample. (b) The UV lamp is position directly above (13mm gap) the resonant cavity.

Fig. 11
Fig. 11

Temperature sensing experimental results. (a) Sensor response when the temperature is increased. Inset: The histogram from the noise measurement with a Gaussian fit. (b) The results from part (a) are re-plotted to highlight the relationship between the resonance shift and the temperature change. The solid line is the linear fit.

Fig. 12
Fig. 12

UV sensing experimental results. (a) Sensor response with several different exposure UV powers, increasing from 54mW/cm2 to 100mW/cm2 and then decreasing to 54mW/cm2 (b) The characteristic UV sensing curve showing both the forward and reverse response at 100mW/cm2. The resonance undergoes a large, rapid wavelength shift once the UV is turned on. When the UV is turned off, the resonant wavelength returns to its original value. Inset: The histogram from the noise measurement with a Gaussian (normal) fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλ/λ=Δn/n+ΔR/R.
Δλ= λ 0 (ε+ dn/dT n )ΔT.

Metrics