Abstract

We experimentally investigate the dynamical characteristics of semiconductor lasers subject to both the optical injection (OI) and the optical feedback (OF). By coupling the OI and the OF lights into the same fiber before injecting into the slave laser (SL), the ratio between the two perturbations can be accurately determined and controlled. The frequency shifts in the cavity resonance frequency of the SL (νSL) induced by the OI and the OF lights are compared quantitatively. To study the competition between the OI and the OF in the SL, the mapping of the dynamical scenarios and states are plotted in the parameter space. This mapping serves as the guideline for choosing the appropriate operation conditions in various applications employing both the OI and the OF at the same time. In this paper, the suitable feedback strengths to narrow the linewidths of photonic microwave signals generated by the OI are studied. The limitation of using OI in enhancing the bandwidths of the chaos states generated by the OF is discussed. Moreover, to suppress the unwanted dynamics due to the feedback, the optimal injection parameters of the OI are shown.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
    [CrossRef]
  2. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
    [CrossRef]
  3. J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers and their applications,” Opt. Rev.6, 1–15 (1999).
    [CrossRef]
  4. T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
    [CrossRef]
  5. S. C. Chen, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express15, 14921–14935 (2007).
    [CrossRef]
  6. Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express17, 18596–18605 (2009).
    [CrossRef]
  7. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.3, 644–650 (2011).
    [CrossRef]
  8. J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun.167, 273–282 (1999).
    [CrossRef]
  9. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.9, 1322–1324 (1997).
    [CrossRef]
  10. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
    [CrossRef]
  11. Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett.28, 319–321 (2003).
    [CrossRef] [PubMed]
  12. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. C. Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16, 6609–6618 (2008).
    [CrossRef] [PubMed]
  13. J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. of Quantum Electron.38, 1141–1154 (2002).
    [CrossRef]
  14. R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
    [CrossRef]
  15. R. W. Tkach and A. R. Chraplyvy, “Regions of feedback effects in 1.5-um distributed feedback laser,” J. Light-wave Technol.LT-4, 1655–1661 (1986).
    [CrossRef]
  16. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. of Sel. Top. Quantum Electron.10, 1025–1032 (2004).
    [CrossRef]
  17. J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett.38, 344–346 (2013).
    [CrossRef] [PubMed]
  18. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
    [CrossRef]
  19. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
    [CrossRef]
  20. A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34, 1144–1146 (2009).
    [CrossRef] [PubMed]
  21. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46, 421–428 (2010).
    [CrossRef]
  22. Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
    [CrossRef]
  23. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun.221, 173–180 (2003).
    [CrossRef]
  24. F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
    [CrossRef]

2013

J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett.38, 344–346 (2013).
[CrossRef] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
[CrossRef]

2011

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.3, 644–650 (2011).
[CrossRef]

2010

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46, 421–428 (2010).
[CrossRef]

2009

2008

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. C. Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16, 6609–6618 (2008).
[CrossRef] [PubMed]

2007

2005

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

2004

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. of Sel. Top. Quantum Electron.10, 1025–1032 (2004).
[CrossRef]

2003

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun.221, 173–180 (2003).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
[CrossRef]

Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett.28, 319–321 (2003).
[CrossRef] [PubMed]

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

2002

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. of Quantum Electron.38, 1141–1154 (2002).
[CrossRef]

1999

J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers and their applications,” Opt. Rev.6, 1–15 (1999).
[CrossRef]

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun.167, 273–282 (1999).
[CrossRef]

1997

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

1986

R. W. Tkach and A. R. Chraplyvy, “Regions of feedback effects in 1.5-um distributed feedback laser,” J. Light-wave Technol.LT-4, 1655–1661 (1986).
[CrossRef]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
[CrossRef]

Chan, S. C.

J. P. Zhuang and S. C. Chan, “Tunable photonics microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett.38, 344–346 (2013).
[CrossRef] [PubMed]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46, 421–428 (2010).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. of Sel. Top. Quantum Electron.10, 1025–1032 (2004).
[CrossRef]

Chao, Y. K.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
[CrossRef]

Chen, S. C.

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regions of feedback effects in 1.5-um distributed feedback laser,” J. Light-wave Technol.LT-4, 1655–1661 (1986).
[CrossRef]

Colet, P.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

Daudén, J.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

Elsäßer, W.

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Fischer, I.

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Gavrielides, A.

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Green, K.

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Hasnain, C. C.

He, H. C.

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
[CrossRef]

Heil, T.

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

Hwang, S. K.

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.3, 644–650 (2011).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express17, 18596–18605 (2009).
[CrossRef]

Kane, D. M.

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun.167, 273–282 (1999).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Lau, E. K.

Lawrence, J. S.

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun.167, 273–282 (1999).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

Liao, Y. H.

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
[CrossRef]

Lin, F. Y.

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.3, 644–650 (2011).
[CrossRef]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
[CrossRef]

Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express17, 18596–18605 (2009).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun.221, 173–180 (2003).
[CrossRef]

Liu, J. M.

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

S. C. Chen, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express15, 14921–14935 (2007).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. of Sel. Top. Quantum Electron.10, 1025–1032 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun.221, 173–180 (2003).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
[CrossRef]

Ohtsubo, J.

Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett.28, 319–321 (2003).
[CrossRef] [PubMed]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. of Quantum Electron.38, 1141–1154 (2002).
[CrossRef]

J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers and their applications,” Opt. Rev.6, 1–15 (1999).
[CrossRef]

Ohyagi, K.

Parekh, D.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

Sung, H. K.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

Takiguchi, Y.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regions of feedback effects in 1.5-um distributed feedback laser,” J. Light-wave Technol.LT-4, 1655–1661 (1986).
[CrossRef]

Toral, R.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

Vicente, R.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

Wang, A. B.

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34, 1144–1146 (2009).
[CrossRef] [PubMed]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
[CrossRef]

Wang, J. F.

Wang, Y. C.

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett.34, 1144–1146 (2009).
[CrossRef] [PubMed]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

Wu, M. C.

Wu, T. C.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
[CrossRef]

Zhao, X.

Zhuang, J. P.

IEEE J. of Quantum Electron.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. of Quantum Electron.39, 1196–1204 (2003).
[CrossRef]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. of Quantum Electron.38, 1141–1154 (2002).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. of Quantum Electron.41, 541–548 (2005).
[CrossRef]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. of Quantum Electron.48, 1010–1014 (2011).
[CrossRef]

IEEE J. of Sel. Top. Quantum Electron.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor oscillators,” IEEE J. of Sel. Top. Quantum Electron.19, 1500807 (2013).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. of Sel. Top. Quantum Electron.10, 1025–1032 (2004).
[CrossRef]

Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron.19, 1500606 (2013).
[CrossRef]

IEEE J. Quantum Electron.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46, 421–428 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.9, 1322–1324 (1997).
[CrossRef]

IEEE Photonic Technol. Lett.

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photonic Technol. Lett.20, 1633–1635 (2008).
[CrossRef]

IEEE Photonics J.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor lasers,” IEEE Photonics J.3, 644–650 (2011).
[CrossRef]

J. Light-wave Technol.

R. W. Tkach and A. R. Chraplyvy, “Regions of feedback effects in 1.5-um distributed feedback laser,” J. Light-wave Technol.LT-4, 1655–1661 (1986).
[CrossRef]

Opt. Commun.

J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Opt. Commun.167, 273–282 (1999).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun.221, 173–180 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers and their applications,” Opt. Rev.6, 1–15 (1999).
[CrossRef]

Phys. Rep.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416, 1–128 (2005).
[CrossRef]

Phys. Rev. E

T. Heil, I. Fischer, W. Elsäβer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E67, 066214 (2003).
[CrossRef]

Quantum Semiclass. Opt.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt.9, 765–784 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the semiconductor laser subject to both the OI and the OF.

Fig. 2
Fig. 2

Transitions of the optical spectra for the SL subject to (a) OI with f = 5.6 GHz and (b) OF with different ξi and ξfb, respectively. The red dots mark the νSL.

Fig. 3
Fig. 3

Δf of the SL under different ξi and ξfb. The solid squares, triangles, and circles are obtained with the OI scheme for detuning frequencies of f = 5.6, 9.3, and 13.7 GHz, and open circles are obtained with the OF scheme, respectively.

Fig. 4
Fig. 4

Mapping of dynamical scenarios and states under different ξi and ξfb when the SL is subject to both the OI and the OF simultaneously. The detuning frequency is fixed at f = 5.6 GHz. Different dynamical scenarios (separated with the black curves) are defined and differentiated by whether the dynamics and the characteristics frequencies originated from the OI or the OF alone are being preserved (P), shifted (S), or suppressed (S′) after both the OI and the OF lights are simultaneously injected. The letter L is used when the SL is stably locked by the OI light. In the two-letter symbols, the first and the second letters are each corresponding to the effects from the OI and the OF respectively. Regions of dynamical states including the period-one (P1), period-two (P2), quasi-periodic (QP), chaos oscillation (CO), and stable locking (L) are colored in red, cyan, green, gray, and yellow, respectively.

Fig. 5
Fig. 5

Power spectra of the (a)–(c) P2 and (d)–(f) P1 states obtained with ξi = 0.21 and ξi = 0.31 when ξfb is increased from 0, 0.008, to 0.03, respectively. The relative locations of these states in the parameter space are also marked in Fig. 4.

Fig. 6
Fig. 6

Power spectra of the (a)–(c) CO and (d) L states obtained with ξfb = 0.06 when ξi is increased from 0, 0.15, 0.21, to 0.85, respectively. The relative locations of these states in the parameter space are also marked in Fig. 4.

Fig. 7
Fig. 7

The boundaries of injection locking for different ξfb. The dashed lines are the fitting curves of the Hopf and saddle-node bifurcations. The stars marked at the apexes of each locking regions indicate the optimal operation points where minimum ξi are required to stabilize the SL.

Fig. 8
Fig. 8

(a) fopt (solid black curve labeled on the left) and Δf (dashed gray curve labeled on the right) for different ξfb. (b) The threshold (minimum) injection strength ξi,th needed to stabilize the laser under different ξfb. The black curve is obtained when the detuning frequency f is optimized under different ξfb according to the fopt shown in Fig. 8(a). The red and blue curves are obtained with fixed f at −7.5 GHz and 5.6 GHz, respectively.

Metrics