Abstract

A compact optical pickup head in blue wavelength with a single-axial actuator i.e. focusing, for laser thermal lithography was designed, fabricated, and tested. The numerical aperture of the objective lens was 0.85. The linear range of the focus error signal was 3 μm. A planar spring structure for improving the horizontal stability was designed and incorporated into the actuator. We applied a modified push-pull method together with a static Blu-ray re-writable disc to test the horizontal stability of the pickup head. We found that the in-plane jitter of the pickup head in two orthogonal directions were 0.34 nm and 1.59 nm, respectively. We demonstrated an example of applying the pickup head to write an inorganic photo-resist GeSbSnO film, and well-defined pattern was obtained with ~220 nm spot size.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Chu, C.-D. Shiue, H.-W. Cheng, M.-L. Tseng, H.-P. Chiang, M. Mansuripur, and D.-P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]
  2. C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
    [CrossRef]
  3. K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
    [CrossRef]
  4. M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
    [CrossRef]
  5. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
    [CrossRef]
  6. Blu-ray Disc Association 2010, White paper Blu-ray disc format: 1.C Physical Format Specifications for BD-ROM, 6th Edition, (Blu-ray Disc Association, 2010).
  7. A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
    [CrossRef]
  8. E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).
  9. K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
    [CrossRef]
  10. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
    [CrossRef]
  11. T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol.12(6), 1271–1275 (1975).
    [CrossRef]
  12. A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
    [CrossRef]
  13. J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
    [CrossRef]
  14. C. A. Rothenbach and M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,” Opt. Lasers Eng.50(6), 900–904 (2012).
    [CrossRef]
  15. C.-C. Huang, Y.-C. Lee, C.-T. Yang, K.-C. Cheng, S.-C. Chen, and C.-Y. Chen, U.S. Patent application 20110304838 (Dec. 15, 2011).
  16. A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, 1990), Chap. 7.
  17. Blu-ray Disc Association 2012, White paper Blu-ray disc format: 1.A Physical Format Specifications for BD-RE, 4th Edition (Blu-ray Disc Association, 2012). http://www.blu-raydisc.com/Assets/Downloadablefile/White_Paper_BD-RE_4th_Dec2012_20121210.pdf
  18. Blu-ray Disc Association 2010, White paper Blu-ray disc format: General, 2nd Edition (Blu-ray Disc Association, 2010). http://www.blu-raydisc.com/Assets/Downloadablefile/general_bluraydiscformat-15263.pdf

2012

C. A. Rothenbach and M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,” Opt. Lasers Eng.50(6), 900–904 (2012).
[CrossRef]

2011

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

2010

2009

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

2008

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

2006

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

2005

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

2003

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

2002

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

1992

J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
[CrossRef]

1990

A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
[CrossRef]

1975

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol.12(6), 1271–1275 (1975).
[CrossRef]

Abe, S.

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Aratani, K.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Atoda, N.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Bönisch, J.

J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
[CrossRef]

Bruls, D.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Bulle, H.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Burge, R. E.

J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
[CrossRef]

Chang, T. H. P.

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol.12(6), 1271–1275 (1975).
[CrossRef]

Chen, J.-P.

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

Cheng, H.-W.

Chiang, H.-P.

Chu, C.-H.

El Majdoubi, H.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Fuji, H.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Gupta, M. C.

C. A. Rothenbach and M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,” Opt. Lasers Eng.50(6), 900–904 (2012).
[CrossRef]

Harafuji, K.

A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
[CrossRef]

Hsu, C.-C.

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

Ichikawa, K.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

Ikeya, H.

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

Ito, E.

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Jeng, T.-R.

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

Kai, S.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Kanazawa, Y.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

Kawaguchi, Y.

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Kawai, H.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

Kikukawa, T.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Kouchiyama, A.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Kudryashov, V.

J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
[CrossRef]

Kurihara, K.

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

Kuwahara, M.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Liu, C.-P.

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

Mansuripur, M.

Meinders, E. R.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Mihalcea, C.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Millet, A.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Misaka, A.

A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
[CrossRef]

Nakagawa, K.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Nakano, T.

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

Nakao, T.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Noboru, N.

A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
[CrossRef]

Ohno, E.

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Osato, K.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Peeters, P.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Rastogi, R.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Rothenbach, C. A.

C. A. Rothenbach and M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,” Opt. Lasers Eng.50(6), 900–904 (2012).
[CrossRef]

Shiue, C.-D.

Taga, K.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

Takemoto, Y.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

Tominaga, J.

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

Tomiyama, M.

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Tsai, D.-P.

Tseng, M.-L.

Ujiie, M.

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

Usami, Y.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

van der Veer, M.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

Watanabe, T.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

Yamakawa, Y.

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

Appl. Phys. Express

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Appl. Phys. Express2(12), 126502 (2009).
[CrossRef]

J. Alloy. Comp.

C.-P. Liu, C.-C. Hsu, T.-R. Jeng, and J.-P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp.488(1), 190–194 (2009).
[CrossRef]

J. Appl. Phys.

A. Misaka, K. Harafuji, and N. Noboru, “Determination of proximity effect in electron-beam lithography,” J. Appl. Phys.68(12), 6472–6479 (1990).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

K. Kurihara, Y. Yamakawa, T. Nakano, and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion,” J. Opt. A, Pure Appl. Opt.8(4), S139–S143 (2006).
[CrossRef]

J. Vac. Sci. Technol.

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol.12(6), 1271–1275 (1975).
[CrossRef]

Jpn. J. Appl. Phys.

A. Kouchiyama, K. Aratani, Y. Takemoto, T. Nakao, S. Kai, K. Osato, and K. Nakagawa, “High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist,” Jpn. J. Appl. Phys.42(Part 1, No. 2B2B), 769–771 (2003).
[CrossRef]

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-Transition Mastering of High-Density Optical Media,” Jpn. J. Appl. Phys.46(6B), 3989–3992 (2011).

E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “TeOx-based film for heat-mode inorganic photoresist mastering,” Jpn. J. Appl. Phys.44(5B), 3574–3577 (2005).
[CrossRef]

Microelectron. Eng.

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “Thermal lithography for 0.1 μm pattern fabrication,” Microelectron. Eng.61–62, 415–421 (2002).
[CrossRef]

K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectron. Eng.85(5–6), 1197–1201 (2008).
[CrossRef]

J. Bönisch, V. Kudryashov, and R. E. Burge, “The experimental study of the main technical parameters influencing the possible resolution of electron beam lithography,” Microelectron. Eng.17(1–4), 33–36 (1992).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

C. A. Rothenbach and M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,” Opt. Lasers Eng.50(6), 900–904 (2012).
[CrossRef]

Other

C.-C. Huang, Y.-C. Lee, C.-T. Yang, K.-C. Cheng, S.-C. Chen, and C.-Y. Chen, U.S. Patent application 20110304838 (Dec. 15, 2011).

A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, 1990), Chap. 7.

Blu-ray Disc Association 2012, White paper Blu-ray disc format: 1.A Physical Format Specifications for BD-RE, 4th Edition (Blu-ray Disc Association, 2012). http://www.blu-raydisc.com/Assets/Downloadablefile/White_Paper_BD-RE_4th_Dec2012_20121210.pdf

Blu-ray Disc Association 2010, White paper Blu-ray disc format: General, 2nd Edition (Blu-ray Disc Association, 2010). http://www.blu-raydisc.com/Assets/Downloadablefile/general_bluraydiscformat-15263.pdf

Blu-ray Disc Association 2010, White paper Blu-ray disc format: 1.C Physical Format Specifications for BD-ROM, 6th Edition, (Blu-ray Disc Association, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of the optical pickup head.

Fig. 2
Fig. 2

Optical simulations of the optical pickup head by Zemax. (a) Simulated layout of the optical head. (b) Simulated focus error signal.

Fig. 3
Fig. 3

Top-view drawing of the single-axial actuator.

Fig. 4
Fig. 4

Exploded view of the single-axial actuator.

Fig. 5
Fig. 5

Schematic diagram of the spring.

Fig. 6
Fig. 6

Photograph of the optical pickup head.

Fig. 7
Fig. 7

Spot measurement of the objective lens (a) Optical spot image (b) Spot test result.

Fig. 8
Fig. 8

Bode plot of the actuator (a) Frequency response (b) Phase response.

Fig. 9
Fig. 9

Test result of displacement V.S. voltage of the actuator.

Fig. 10
Fig. 10

Stability test of the focus servo. (a) Focus error signal. (b) Residual focus error signal when focus servo is on.

Fig. 11
Fig. 11

Schematic diagrams of the push-pull method. (a) System layout. (b) Push-pull signal.

Fig. 12
Fig. 12

Schematic layout of the experiment set up, the optical axis of the beam after the beam-shaper is + 45° slanted with track direction of the disc.

Fig. 13
Fig. 13

The push-pull experiment results. (a) The push-pull signal while disc spins (b) The push-pull signal while disc is static.

Fig. 14
Fig. 14

Schematic layout of the experiment setup, the optical axis of the beam after the beam-shaper is + 45° slanted with track direction of the disc.

Fig. 15
Fig. 15

The push-pull experiment results with optical head in another orientation when disc stops.

Fig. 16
Fig. 16

The background voltage of the push-pull experiment with laser power off.

Fig. 17
Fig. 17

SEM images of (a) top-view and (b) side-view of the exposed spots on the GeSbSnO in-organic photo-resist.

Tables (2)

Tables Icon

Table 1 Important optical specifications of the objective lens

Tables Icon

Table 2 Final specifications of the actuator

Metrics