Abstract

In this study, a novel D-shaped localized surface plasmon resonance (LSPR) fiber sensor was introduced. The construction of this sensor involved etching of a single-mode fiber on the cladding layer and core layer, followed by plating using nano-metal strips. The design and calculations of the entire sensor were based on a numerical simulation method combining the finite element method (FEM) and the eigenmode expansion method (EEM). By using graphical representations of the algorithm results, the excitation of the LSPR was clearly observed. The finished D-shaped LSPR fiber sensor possesses several excellent properties, including a short length (2494.4301 μm), high resolution (approximately 35 dB), and high sensitivity (approximately 20183.333 nm/RIU). In addition, compared with LPG-SPR fiber sensor, the framework provides three advantages, namely, a fabrication process that is compatible with semiconductor fabrication, as well as the low-temperature cross-talk and high-temperature stability of surface grating.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express 21(12), 13875–13895 (2013).
    [CrossRef] [PubMed]
  2. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [CrossRef] [PubMed]
  3. J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
    [CrossRef]
  4. X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18(17), 17950–17957 (2010).
    [CrossRef] [PubMed]
  5. M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
    [CrossRef]
  6. L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
    [CrossRef] [PubMed]
  7. K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express 18(5), 4041–4048 (2010).
    [CrossRef] [PubMed]
  8. J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26(12), B139–B142 (2009).
    [CrossRef]
  9. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
    [CrossRef] [PubMed]
  10. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
    [CrossRef] [PubMed]
  11. D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Metallic-Grating-Based Interconnector Between Surface Plasmon Plariton Waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
    [CrossRef]
  12. Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensor,” J. Lightwave Technol. 27(21), 4804–4808 (2009).
    [CrossRef]
  13. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [CrossRef] [PubMed]
  14. Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B 23(5), 801–811 (2006).
    [CrossRef]
  15. G. Nemova and R. Kashyap, “Modeling of Plasmon-Polariton Refractive-Index Hollow Core Fiber Sensors Assisted by a Fiber Bragg grating,” J. Lightwave Technol. 24(10), 3789–3796 (2006).
    [CrossRef]
  16. Ó. Esteban, R. Alonso, M. C. Navarrete, and A. González-Cano, “Surface Plasmon Excitation in Fiber-Optics Sensors: A Novel Theoretical Approach,” J. Lightwave Technol. 20(3), 448–453 (2002).
    [CrossRef]
  17. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [CrossRef] [PubMed]
  18. R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt. 50(25), E138–E144 (2011).
    [CrossRef]
  19. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
    [CrossRef] [PubMed]
  20. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
    [CrossRef] [PubMed]
  21. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27(7), 1743–1749 (2010).
    [CrossRef] [PubMed]
  22. R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express 18(3), 3035–3044 (2010).
    [CrossRef] [PubMed]
  23. M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express 18(8), 7705–7713 (2010).
    [CrossRef] [PubMed]
  24. W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express 18(2), 843–853 (2010).
    [CrossRef]
  25. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
    [CrossRef] [PubMed]
  26. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
    [CrossRef] [PubMed]
  27. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25(3), 725–735 (2008).
    [CrossRef] [PubMed]
  28. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48(19), 3796–3802 (2009).
    [CrossRef] [PubMed]
  29. D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE 4987, 69–82 (2003).
    [CrossRef]
  30. M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express 17(7), 5867–5878 (2009).
    [CrossRef] [PubMed]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  32. J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, (2006).
  33. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[CrossRef] [PubMed]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

2011 (4)

2010 (9)

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[CrossRef] [PubMed]

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express 18(2), 843–853 (2010).
[CrossRef]

R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express 18(3), 3035–3044 (2010).
[CrossRef] [PubMed]

K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express 18(5), 4041–4048 (2010).
[CrossRef] [PubMed]

M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express 18(8), 7705–7713 (2010).
[CrossRef] [PubMed]

L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
[CrossRef] [PubMed]

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A 27(7), 1743–1749 (2010).
[CrossRef] [PubMed]

X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18(17), 17950–17957 (2010).
[CrossRef] [PubMed]

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
[CrossRef]

2009 (9)

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express 17(7), 5867–5878 (2009).
[CrossRef] [PubMed]

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48(19), 3796–3802 (2009).
[CrossRef] [PubMed]

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26(12), B139–B142 (2009).
[CrossRef]

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
[CrossRef] [PubMed]

Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensor,” J. Lightwave Technol. 27(21), 4804–4808 (2009).
[CrossRef]

D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Metallic-Grating-Based Interconnector Between Surface Plasmon Plariton Waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009).
[CrossRef]

2008 (1)

2006 (3)

2003 (1)

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

2002 (1)

Albert, J.

Alonso, R.

An, K. H.

Arbouet, A.

Au, L.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Baffou, G.

Bai, P.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
[CrossRef]

Bharadwaj, R.

Bhatia, P.

Cao, J.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

Chang, C. H.

Chen, J. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Chen, N. K.

Chen, X.

Cheng, G. L.

Choi, D.

Chui, H. C.

Cox, F. M.

Docherty, A.

Dutta, R.

Esteban, Ó.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Galbraith, E. K.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Girard, C.

González-Cano, A.

Grattan, K. T. V.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

Gu, M.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
[CrossRef]

Gupta, B. D.

Han, J. H.

Hartland, G. V.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

He, Y. J.

Hilton, J. P.

Ho, H. P.

Homola, J.

Hu, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Huang, C. H.

Huang, J. F.

Huang, L. X.

Huang, W. P.

Jian, S. S.

Jung, J.

Jung, Y. S.

Kashyap, R.

Kaur, P.

Kim, D.

Kim, H. K.

Kofke, M. J.

Kuhlmey, B. T.

Kundu, T.

R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt. 50(25), E138–E144 (2011).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Lan, Y. C.

Large, M. C. J.

Lee, B.

Lee, I. M.

Lee, P. T.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Li, E. P.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
[CrossRef]

Li, X. D.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Li, Z. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Lin, H. Y.

Lin, J. W.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Lin, Q.

Lin, Y.

Lindquist, R. G.

Liu, D.

Liu, H.

Liu, J. Y.

Liu, W. C.

Lo, Y. L.

Lu, S. P.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Lu, W.

Lu, Y. C.

Ma, W. Y.

Marquez, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Marty, R.

Mukherji, S.

R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt. 50(25), E138–E144 (2011).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Navarrete, M. C.

Nemova, G.

Ng, M. Y.

Park, J.

Pipe, K. P.

Quidant, R.

Sai, V. V. R.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Shao, L. Y.

Shevchenko, Y.

Shtein, M.

Shum, P.

Spacková, B.

Srivastava, S. K.

Sun, T.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

Tsai, C. Y.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Verma, R. K.

Waldeck, D. H.

Walker, G. C.

Wang, A.

Wang, J.

Wuenschell, J.

Xia, Y. N.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Yang, H.

Yao, J.

Yoon, S. J.

Yu, X.

Zhang, S.

Zhang, Y.

Zou, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett. 22(4), 245–247 (2010).
[CrossRef]

IEEE Sens. J. (1)

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Opt. Express (12)

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18(17), 17950–17957 (2010).
[CrossRef] [PubMed]

L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
[CrossRef] [PubMed]

K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express 18(5), 4041–4048 (2010).
[CrossRef] [PubMed]

Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express 21(12), 13875–13895 (2013).
[CrossRef] [PubMed]

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[CrossRef] [PubMed]

R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express 18(3), 3035–3044 (2010).
[CrossRef] [PubMed]

M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express 18(8), 7705–7713 (2010).
[CrossRef] [PubMed]

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express 18(2), 843–853 (2010).
[CrossRef]

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[CrossRef] [PubMed]

M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express 17(7), 5867–5878 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

D-shaped LSPR fiber sensor side view structural diagram.

Fig. 2
Fig. 2

D-shaped LSPR fiber sensor sectional view structural diagram.

Fig. 3
Fig. 3

The structural diagram of metal (Au) in D-shaped LSPR fiber sensor.

Fig. 4
Fig. 4

The 2D power distribution of the first LSPR wave for the thickness of 20 nm (Au) on the x axis.

Fig. 5
Fig. 5

Fourier series expansion for the forward and backward propagation modes.

Fig. 6
Fig. 6

The relationship between the field strength of the two adjacent uniform segment objects Sek-1 and Sek.

Fig. 7
Fig. 7

The relationships between the orthogonal values of the 50 modes in segment (a), segment (b), and segment (c).

Fig. 8
Fig. 8

The 2D and 3D power distribution of the core mode; the effective refractive index is n eff core =1.442631 . The total length of x axis (and that of y axis) used to simulated is 12.5 μm.

Fig. 9
Fig. 9

(a) The X-Z plane power transmission (Poynting Vector PZ) of the core mode, and (b) A magnified image of the View A region in (a) with scale bar 7 and 60 μm for z axis and scale bar 7 and 35 μm for x axis.

Fig. 10
Fig. 10

The 2D and 3D power distribution of the D-shape LSPR sensor at z = 63.569 μm. The total length of x axis (and that of y axis) used to simulated is 12.5 μm.

Fig. 11
Fig. 11

The relationships between the eigenmode mode expansion position and power loss for employing the 50 guided modes.

Fig. 12
Fig. 12

Spectrum changes for the D-shaped LSPR fiber sensor when the analyte refractive index na changed.

Fig. 13
Fig. 13

The relationships between the analyte refractive index na and the D-shaped LSPR’s resonance wavelength.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A E tν × H tμ z ^ dA= A E tμ × H tν z ^ dA=0forνμ.
E(x,y,z)= Φ n (x,y) e i β n z
S e k (+) = n=1 m C n f Φ n (x,y) e i β n z
S e k () = n=1 m C n b Φ n (x,y) e i β n z
E(x,y,z)= n=1 m ( C n f e i β n z + C n b e i β n z ) E n (x,y)
H(x,y,z)= n=1 m ( C n f e i β n z + C n b e i β n z ) H n (x,y)
[ S e k1 () S e k (+) ]= J k1 [ S e k1 (+) S e k () ]
t = = | R(z) | 2 | R(0) | 2 .
Sensitivity (1.61641.4953) (1.3331.327) 20183.333( nm RIU )

Metrics