Abstract

In this study, a novel D-shaped localized surface plasmon resonance (LSPR) fiber sensor was introduced. The construction of this sensor involved etching of a single-mode fiber on the cladding layer and core layer, followed by plating using nano-metal strips. The design and calculations of the entire sensor were based on a numerical simulation method combining the finite element method (FEM) and the eigenmode expansion method (EEM). By using graphical representations of the algorithm results, the excitation of the LSPR was clearly observed. The finished D-shaped LSPR fiber sensor possesses several excellent properties, including a short length (2494.4301 μm), high resolution (approximately 35 dB), and high sensitivity (approximately 20183.333 nm/RIU). In addition, compared with LPG-SPR fiber sensor, the framework provides three advantages, namely, a fabrication process that is compatible with semiconductor fabrication, as well as the low-temperature cross-talk and high-temperature stability of surface grating.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express21(12), 13875–13895 (2013).
    [CrossRef] [PubMed]
  2. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt.50(14), 2032–2036 (2011).
    [CrossRef] [PubMed]
  3. J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
    [CrossRef]
  4. X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express18(17), 17950–17957 (2010).
    [CrossRef] [PubMed]
  5. M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
    [CrossRef]
  6. L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express18(11), 11464–11471 (2010).
    [CrossRef] [PubMed]
  7. K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express18(5), 4041–4048 (2010).
    [CrossRef] [PubMed]
  8. J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B26(12), B139–B142 (2009).
    [CrossRef]
  9. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express17(18), 16081–16091 (2009).
    [CrossRef] [PubMed]
  10. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009).
    [CrossRef] [PubMed]
  11. D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Metallic-Grating-Based Interconnector Between Surface Plasmon Plariton Waveguides,” J. Lightwave Technol.27(24), 5675–5680 (2009).
    [CrossRef]
  12. Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensor,” J. Lightwave Technol.27(21), 4804–4808 (2009).
    [CrossRef]
  13. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett.34(24), 3890–3892 (2009).
    [CrossRef] [PubMed]
  14. Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B23(5), 801–811 (2006).
    [CrossRef]
  15. G. Nemova and R. Kashyap, “Modeling of Plasmon-Polariton Refractive-Index Hollow Core Fiber Sensors Assisted by a Fiber Bragg grating,” J. Lightwave Technol.24(10), 3789–3796 (2006).
    [CrossRef]
  16. Ó. Esteban, R. Alonso, M. C. Navarrete, and A. González-Cano, “Surface Plasmon Excitation in Fiber-Optics Sensors: A Novel Theoretical Approach,” J. Lightwave Technol.20(3), 448–453 (2002).
    [CrossRef]
  17. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express20(19), 21693–21701 (2012).
    [CrossRef] [PubMed]
  18. R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt.50(25), E138–E144 (2011).
    [CrossRef]
  19. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express2(3), 478–484 (2011).
    [CrossRef] [PubMed]
  20. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
    [CrossRef] [PubMed]
  21. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A27(7), 1743–1749 (2010).
    [CrossRef] [PubMed]
  22. R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express18(3), 3035–3044 (2010).
    [CrossRef] [PubMed]
  23. M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express18(8), 7705–7713 (2010).
    [CrossRef] [PubMed]
  24. W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express18(2), 843–853 (2010).
    [CrossRef]
  25. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
    [CrossRef] [PubMed]
  26. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express18(1), 165–172 (2010).
    [CrossRef] [PubMed]
  27. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A25(3), 725–735 (2008).
    [CrossRef] [PubMed]
  28. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt.48(19), 3796–3802 (2009).
    [CrossRef] [PubMed]
  29. D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003).
    [CrossRef]
  30. M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express17(7), 5867–5878 (2009).
    [CrossRef] [PubMed]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  32. J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, (2006).
  33. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express20(19), 21693–21701 (2012).
[CrossRef] [PubMed]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

2011 (4)

2010 (9)

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express18(1), 165–172 (2010).
[CrossRef] [PubMed]

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express18(2), 843–853 (2010).
[CrossRef]

R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express18(3), 3035–3044 (2010).
[CrossRef] [PubMed]

K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express18(5), 4041–4048 (2010).
[CrossRef] [PubMed]

M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express18(8), 7705–7713 (2010).
[CrossRef] [PubMed]

L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express18(11), 11464–11471 (2010).
[CrossRef] [PubMed]

S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A27(7), 1743–1749 (2010).
[CrossRef] [PubMed]

X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express18(17), 17950–17957 (2010).
[CrossRef] [PubMed]

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
[CrossRef]

2009 (9)

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express17(7), 5867–5878 (2009).
[CrossRef] [PubMed]

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt.48(19), 3796–3802 (2009).
[CrossRef] [PubMed]

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B26(12), B139–B142 (2009).
[CrossRef]

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett.34(24), 3890–3892 (2009).
[CrossRef] [PubMed]

Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensor,” J. Lightwave Technol.27(21), 4804–4808 (2009).
[CrossRef]

D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Metallic-Grating-Based Interconnector Between Surface Plasmon Plariton Waveguides,” J. Lightwave Technol.27(24), 5675–5680 (2009).
[CrossRef]

2008 (1)

2006 (3)

2003 (1)

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

2002 (1)

Albert, J.

Alonso, R.

An, K. H.

Arbouet, A.

Au, L.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Baffou, G.

Bai, P.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
[CrossRef]

Bharadwaj, R.

Bhatia, P.

Cao, J.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

Chang, C. H.

Chen, J. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Chen, N. K.

Chen, X.

Cheng, G. L.

Choi, D.

Chui, H. C.

Cox, F. M.

Docherty, A.

Dutta, R.

Esteban, Ó.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

Galbraith, E. K.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

Girard, C.

González-Cano, A.

Grattan, K. T. V.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

Gu, M.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
[CrossRef]

Gupta, B. D.

Han, J. H.

Hartland, G. V.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

He, Y. J.

Hilton, J. P.

Ho, H. P.

Homola, J.

Hu, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Huang, C. H.

Huang, J. F.

Huang, L. X.

Huang, W. P.

Jian, S. S.

Jung, J.

Jung, Y. S.

Kashyap, R.

Kaur, P.

Kim, D.

Kim, H. K.

Kofke, M. J.

Kuhlmey, B. T.

Kundu, T.

R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt.50(25), E138–E144 (2011).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Lan, Y. C.

Large, M. C. J.

Lee, B.

Lee, I. M.

Lee, P. T.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Li, E. P.

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
[CrossRef]

Li, X. D.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Li, Z. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Lin, H. Y.

Lin, J. W.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Lin, Q.

Lin, Y.

Lindquist, R. G.

Liu, D.

Liu, H.

Liu, J. Y.

Liu, W. C.

Lo, Y. L.

Lu, S. P.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Lu, W.

Lu, Y. C.

Ma, W. Y.

Marquez, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Marty, R.

Mukherji, S.

R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt.50(25), E138–E144 (2011).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Navarrete, M. C.

Nemova, G.

Ng, M. Y.

Park, J.

Pipe, K. P.

Quidant, R.

Sai, V. V. R.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Shao, L. Y.

Shevchenko, Y.

Shtein, M.

Shum, P.

Spacková, B.

Srivastava, S. K.

Sun, T.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

Tsai, C. Y.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Verma, R. K.

Waldeck, D. H.

Walker, G. C.

Wang, A.

Wang, J.

Wuenschell, J.

Xia, Y. N.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Yang, H.

Yao, J.

Yoon, S. J.

Yu, X.

Zhang, S.

Zhang, Y.

Zou, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010).
[CrossRef]

IEEE Sens. J. (1)

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Opt. Express (12)

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express18(17), 17950–17957 (2010).
[CrossRef] [PubMed]

L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express18(11), 11464–11471 (2010).
[CrossRef] [PubMed]

K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express18(5), 4041–4048 (2010).
[CrossRef] [PubMed]

Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express21(12), 13875–13895 (2013).
[CrossRef] [PubMed]

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express20(19), 21693–21701 (2012).
[CrossRef] [PubMed]

R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express18(3), 3035–3044 (2010).
[CrossRef] [PubMed]

M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express18(8), 7705–7713 (2010).
[CrossRef] [PubMed]

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express18(2), 843–853 (2010).
[CrossRef]

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express18(1), 165–172 (2010).
[CrossRef] [PubMed]

M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express17(7), 5867–5878 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

D-shaped LSPR fiber sensor side view structural diagram.

Fig. 2
Fig. 2

D-shaped LSPR fiber sensor sectional view structural diagram.

Fig. 3
Fig. 3

The structural diagram of metal (Au) in D-shaped LSPR fiber sensor.

Fig. 4
Fig. 4

The 2D power distribution of the first LSPR wave for the thickness of 20 nm (Au) on the x axis.

Fig. 5
Fig. 5

Fourier series expansion for the forward and backward propagation modes.

Fig. 6
Fig. 6

The relationship between the field strength of the two adjacent uniform segment objects Sek-1 and Sek.

Fig. 7
Fig. 7

The relationships between the orthogonal values of the 50 modes in segment (a), segment (b), and segment (c).

Fig. 8
Fig. 8

The 2D and 3D power distribution of the core mode; the effective refractive index is n eff core =1.442631 . The total length of x axis (and that of y axis) used to simulated is 12.5 μm.

Fig. 9
Fig. 9

(a) The X-Z plane power transmission (Poynting Vector PZ) of the core mode, and (b) A magnified image of the View A region in (a) with scale bar 7 and 60 μm for z axis and scale bar 7 and 35 μm for x axis.

Fig. 10
Fig. 10

The 2D and 3D power distribution of the D-shape LSPR sensor at z = 63.569 μm. The total length of x axis (and that of y axis) used to simulated is 12.5 μm.

Fig. 11
Fig. 11

The relationships between the eigenmode mode expansion position and power loss for employing the 50 guided modes.

Fig. 12
Fig. 12

Spectrum changes for the D-shaped LSPR fiber sensor when the analyte refractive index na changed.

Fig. 13
Fig. 13

The relationships between the analyte refractive index na and the D-shaped LSPR’s resonance wavelength.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A E tν × H tμ z ^ dA= A E tμ × H tν z ^ dA=0forνμ.
E(x,y,z)= Φ n (x,y) e i β n z
S e k (+) = n=1 m C n f Φ n (x,y) e i β n z
S e k () = n=1 m C n b Φ n (x,y) e i β n z
E(x,y,z)= n=1 m ( C n f e i β n z + C n b e i β n z ) E n (x,y)
H(x,y,z)= n=1 m ( C n f e i β n z + C n b e i β n z ) H n (x,y)
[ S e k1 () S e k (+) ]= J k1 [ S e k1 (+) S e k () ]
t = = | R(z) | 2 | R(0) | 2 .
Sensitivity (1.61641.4953) (1.3331.327) 20183.333( nm RIU )

Metrics