Abstract

A CMOS compatible wavelength monitor comprised of two thermally tuned racetrack-ring resonators with defect mediated photodiode structures is experimentally demonstrated in monolithic silicon. Each resonator is independently tuned so as to determine an unknown input wavelength by tuning the resonance peak locations until there is overlap between the two comb spectra. The presence of two of these resonator/heater components, each with a different free spectral range, increases the unambiguous measurement range when compared to one component used on its own.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  3. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express16(21), 16754–16765 (2008).
    [CrossRef] [PubMed]
  4. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  5. D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).
  6. J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
    [CrossRef]
  7. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
    [CrossRef] [PubMed]
  8. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
    [CrossRef]
  9. A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
    [CrossRef]
  10. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
    [CrossRef]
  11. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
    [CrossRef]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol.23(1), 401–412 (2005).
    [CrossRef]
  13. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  14. W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
    [CrossRef]
  15. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]

2012 (1)

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

2011 (1)

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

2010 (3)

2008 (1)

2006 (2)

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

2005 (3)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

Ackert, J. J.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

Almeida, V. R.

Asghari, M.

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express16(21), 16754–16765 (2008).
[CrossRef] [PubMed]

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Bae, H. K.

Baets, R.

Beausoleil, R. G.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

Beckx, S.

Bienstman, P.

Bogaerts, W.

Bogarts, W.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

Bradley, J. D. B.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Coleman, P. G.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

Day, J.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

De La Rue, R. M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

DeHeyn, P.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

DeVos, K.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

Doylend, J. K.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

Dumon, P.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

Evans, D. I.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Fiorentino, M.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

Gou, S. H.

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

Hopper, A.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Jessop, P. E.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
[CrossRef]

Johnston, S.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kim, G.-D.

Knights, A. P.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
[CrossRef]

Knights, I.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lim, B. T.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Logan, D. F.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Luff, S.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Luyssaert, B.

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Park, C.-H.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Roberts, F.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Selvaraja, S. K.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

Smith, B. T.

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Taillaert, D.

Tsang, J. H.

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Van Campenhout, J.

Van Thourhout, D.

VanThorhout, D.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

VanVaerenbergh, T.

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Wiaux, V.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Zheng, D. W.

Appl. Phys. Lett. (1)

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm,” Appl. Phys. Lett.86(24), 241103 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55 μm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

J. Appl. Phys. (1)

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys.99(7), 073101 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Nanophotonoics (1)

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonoics5(1), 059507 (2011).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-Insulator Waveguide Photo-detector with Self-ion Implantation Engineered Enhanced Infrared Response,” J. Vac. Sci. Technol. A24(3), 783 (2006).
[CrossRef]

Laser Photonics Rev. (1)

W. Bogarts, P. DeHeyn, T. VanVaerenbergh, K. DeVos, S. K. Selvaraja, P. Dumon, P. Bienstman, D. VanThorhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012).
[CrossRef]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

D. I. Evans, I. Knights, A. Hopper, F. Roberts, S. Johnston, J. Day, S. Luff, J. H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators,” in Proceedings of the OFC Conference 2003. 1(1) 249–251 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of silicon photonic wavelength monitor showing grating-coupled input and output and 50/50 splitter with ring resonant defect-mediated photodiodes. All distance are in mm.

Fig. 2
Fig. 2

Layout of a racetrack-ring resonator with a defect mediated photodiode within the ring. The photodiode is 60 μm in length and length of the directional coupler is 12 μm.

Fig. 3
Fig. 3

Transmitted power, on the left, and diode photocurrent, on the right, as a function of wavelength for (a) 190nm and (b) 205 nm circumference racetrack-ring resonators, both structures have the photodiode biased at −2 V

Fig. 4
Fig. 4

Absolute values of photo-current and dark-current versus voltage for the photodiodes of (a) lower path and (b) upper path with and without coupled light

Fig. 5
Fig. 5

(a) Transmission spectra with different power applied to the integrated micro heater of lower path resonator (b) The shift of resonance wavelength at different heater power.

Fig. 6
Fig. 6

(a) Transmission spectra with different power applied to the integrated micro heater of upper path resonator (b) The shift of resonance wavelength at different heater power.

Fig. 7
Fig. 7

Plot (a)-(d) illustrate the thermal tuning of resonance peaks to match a particular input wavelength, which is shown by the vertical black line. LPDHP and UPDHP are the measured lower and upper path heater powers that tune their respective rings into resonance with the input wavelengths, which are 1554nm, 1557nm, 1560nm and 1566nm in (a)-(d)

Tables (1)

Tables Icon

Table 1 Results of determination of an input wavelength

Metrics