Abstract

An intermodulation distortion suppression method based on the optical carrier band processing is demonstrated. A systematic analysis of the main optical spectrum contributors for the third-order intermodulation distortion in the nonlinear system is presented. Theoretical analysis shows that the third-order intermodulation distortion terms can cancel each other if a proper phase shifting is imposed to the optical carrier band. We experimentally demonstrate the approach with a two-tone test and a suppression of about 33 dB in the third-order intermodulation distortion is obtained. Experimental results show that an overall fundamental to third-order intermodulation distortion ratio of up to 64 dB is achieved and the link dynamic range is improved by 14.7 dB, compared with the conventional link without the proposed optical carrier band processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. V. Urick, “Long-haul analog links tutorial,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on OFC/NFOEC (San Diego, Calif., USA, 2010), pp. 1–39.
  4. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol.27(15), 3034–3041 (2009).
    [CrossRef]
  5. V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
    [CrossRef]
  6. T. Ismail, C. Liu, J. Mitchell, and A. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol.25(11), 3274–3282 (2007).
    [CrossRef]
  7. J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
    [CrossRef]
  8. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol.26(15), 2718–2724 (2008).
    [CrossRef]
  9. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
    [CrossRef]
  10. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
    [CrossRef] [PubMed]
  11. C. Lim, A. T. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber–radio applications incorporating OSSB+C modulation in an optical integrated-access environment,” J. Lightwave Technol.25(6), 1602–1612 (2007).
    [CrossRef]
  12. M. H. Huang, J. B. Fu, and S. L. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett.37(11), 1823–1825 (2012).
    [CrossRef] [PubMed]
  13. G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
    [CrossRef]
  14. G. Zhang, S. Li, X. Zheng, H. Zhang, B. K. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeterwave ROF links,” Opt. Express20(15), 17214–17219 (2012).
    [CrossRef]
  15. L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
    [CrossRef]

2012 (2)

2011 (1)

2010 (2)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (2)

2006 (2)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Ackerman, E.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Betts, G.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Bucholtz, F.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Cox, C.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Cui, Y.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Dai, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Dalton, L. R.

Devenport, J.

Duan, R.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Fetterman, H. R.

S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
[CrossRef] [PubMed]

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

Fu, J. B.

Hraimel, B.

Huang, M. H.

Ismail, T.

Karim, A.

Kim, S. K.

Knapp, P.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Lee, K. L.

Li, S.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. K. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeterwave ROF links,” Opt. Express20(15), 17214–17219 (2012).
[CrossRef]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Lim, C.

Lin, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Liu, C.

Liu, W.

S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
[CrossRef] [PubMed]

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

Masella, B.

Miao, H.

L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
[CrossRef]

Mitchell, J.

Nirmalathas, A. T.

Novak, D.

Pan, S. L.

Pei, Q.

Prince, J.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Rogge, M.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Seeds, A.

Swingen, L.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Urick, V.

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

Waterhouse, R.

Weiner, A. M.

L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
[CrossRef]

Wu, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Xiang, P.

Xu, K.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Xu, L.

L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
[CrossRef]

Yao, J.

Zhang, G.

Zhang, H.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. K. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeterwave ROF links,” Opt. Express20(15), 17214–17219 (2012).
[CrossRef]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhang, X.

Zheng, X.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. K. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeterwave ROF links,” Opt. Express20(15), 17214–17219 (2012).
[CrossRef]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhou, B. K.

Zhu, G.

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

G. Zhu, W. Liu, and H. R. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

L. Xu, H. Miao, and A. M. Weiner, “All-order polarization-mode-dispersion (PMD) compensation at 40 Gb/s via hyperfine resolution optical pulse shaping,” IEEE Photon. Technol. Lett.22(15), 1078–1080 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

V. Urick, M. Rogge, P. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech.54(4), 1458–1463 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (1)

Other (2)

V. Urick, “Long-haul analog links tutorial,” in Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on OFC/NFOEC (San Diego, Calif., USA, 2010), pp. 1–39.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, “Optical linearization for intensity-modulated analog links employing equivalent incoherent combination technique,” in Proceedings of International Topical Meeting on Microwave Photonics, (Singapore, 2011), pp. 230–233.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The optical spectrum after the MZM ; (b) Detected RF spectrum in system without OCB processing; (c) Detected RF spectrum in system with the proposed OCB processing.

Fig. 2
Fig. 2

The simulated fundamental to IMD3 ratio against cosine of the phase shift θ.

Fig. 3
Fig. 3

Experimental arrangement for the IMD3 suppression in analog fiber-optic link employing OCB processing.

Fig. 4
Fig. 4

Electrical spectra of the output fundamental signal and their IMD3s for (a) the conventional link without any processing in optical domain; (b) the proposed link with OCB processing.

Fig. 5
Fig. 5

Two-tone measurement results for the compensated and un-compensated links.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E( t )= E c e j ω c t sin( φ 2 + π V RF 2 V π ( sin ω 1 t+sin ω 2 t ) ).
E( t )= E c e j ω c t [ sin( φ 2 )( J o 2 ( m 2 )±2 J 1 2 ( m 2 )cos( ω 1 ± ω 2 )t+2 J o ( m 2 ) J 2 ( m 2 )cos2 ω 1,2 t+... ) cos( φ 2 )( 2 J o ( m 2 ) J 1 ( m 2 )sin ω 1,2 t±2 J 1 ( m 2 ) J 2 ( m 2 )sin( 2 ω 1,2 ± ω 2,1 )t+... ) ].
I( t )=2 P o sin( φ ) J o ( m 2 ) J 1 ( m 2 )sin( ω 1,2 t ) 2 P o sin( φ )( J 1 ( m 2 ) J 2 ( m 2 ) ¯ + J 1 ( m 2 ) J 2 ( m 2 ) ¯ + J 1 3 ( m 2 ) ¯ )sin[ ( 2 ω 1,2 ω 2,1 )t ]. I 01 ' I 12 I 0 ' 1
E( t )= E c e j ω c t [ sin( φ 2 )( e jθ ( J o 2 ( m 2 )-2 J 1 2 ( m 2 )cos( ω 1 - ω 2 )t )+2 J o ( m 2 ) J 2 ( m 2 )cos2 ω 1,2 t+... ) +cos( φ 2 )( 2 J o ( m 2 ) J 1 ( m 2 )sin( ω 1,2 t )±2 J 1 ( m 2 ) J 2 ( m 2 )sin( 2 ω 1,2 ± ω 2,1 )t+... ) ].
I ' ( t )=2 P o cos( θ )sin( φ ) J o ( m 2 ) J 1 ( m 2 )sin( ω 1,2 t ) 2 P o sin( φ )( cosθ I 01 ' + I 12 +cosθ I 0 ' 1 )sin[ ( 2 ω 1,2 ω 2,1 )t ].
cosθ= I 12 I 01 ' + I 0 ' 1 0.33.

Metrics