Abstract

We demonstrate a 968 nm diode end-pumped Er,Pr:GYSGG (Gd1.17Y1.83Sc2Ga3O12) laser at 2.79 μm operated in the pulse and continuous-wave (CW) modes. The lifetimes for the upper laser level 4I11/2 and lower level 4I13/2 are 0.52 and 0.60 ms, respectively. The laser produces 284 mW of power in the CW mode, corresponding to the optical-to-optical efficiency of 14.8% and slope efficiency of 17.4%. The maximum laser energy achieved is 2.4 mJ at a repetition rate of 50 Hz and pulse duration of 0.5 ms, corresponding to a peak power of 4.8 W and slope efficiency of 18.3%. These results suggest that doping deactivator Pr3+ ions can effectively decrease the lower-level lifetime and improve the laser efficiency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
    [CrossRef]
  2. A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
    [CrossRef]
  3. K. L. Vodopyanov, “Mid-infrared optical parametric generator with extra-wide (3–19-µm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells,” J. Opt. Soc. Am. B16(9), 1579–1586 (1999).
    [CrossRef]
  4. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4- μm tunability,” Opt. Lett.25(11), 841–843 (2000).
    [CrossRef] [PubMed]
  5. V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
    [CrossRef]
  6. D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
    [CrossRef]
  7. G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).
  8. Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
    [CrossRef]
  9. Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
    [CrossRef]
  10. J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
    [CrossRef]
  11. J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
    [CrossRef] [PubMed]
  12. D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron.28(4), 1197–1208 (1992).
    [CrossRef]
  13. B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
    [CrossRef]
  14. K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
    [CrossRef] [PubMed]
  15. J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
    [CrossRef]
  16. J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
    [CrossRef]
  17. J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
    [CrossRef]
  18. I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
    [CrossRef]
  19. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
    [CrossRef]
  20. D. G. Lancaster and J. M. Dawes, “Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr,Tm,Ho:YAG laser,” Opt. Laser Technol.30(2), 103–108 (1998).
    [CrossRef]
  21. B. J. Dinerman and P. F. Moulton, “3- µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
    [CrossRef] [PubMed]
  22. B. J. Dinerman, J. Harrison, and P. F. Moulton, Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994) pp. 168–170.

2013

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

2012

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

2011

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

2009

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

2008

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
[CrossRef]

2001

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

2000

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4- μm tunability,” Opt. Lett.25(11), 841–843 (2000).
[CrossRef] [PubMed]

1999

1998

D. G. Lancaster and J. M. Dawes, “Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr,Tm,Ho:YAG laser,” Opt. Laser Technol.30(2), 103–108 (1998).
[CrossRef]

1996

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

1994

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

B. J. Dinerman and P. F. Moulton, “3- µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
[CrossRef] [PubMed]

1993

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
[CrossRef]

1992

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron.28(4), 1197–1208 (1992).
[CrossRef]

1991

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Batalioto, F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

Chen, J. K.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

Cheng, M. J.

Dawes, J. M.

D. G. Lancaster and J. M. Dawes, “Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr,Tm,Ho:YAG laser,” Opt. Laser Technol.30(2), 103–108 (1998).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

Denisove, A. L.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Dinerman, B. J.

Dou, R. Q.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

Ertmer, W.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

Florea, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
[CrossRef]

Frerichs, Ch.

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

Ganikhanov, F.

Gao, J. Y.

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

Georgescu, S.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
[CrossRef]

Gross, G.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Hauschild, D.

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

He, J. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Heumann, E.

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

Högele, A.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

Hörbe, G.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

Huber, G.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Jenssen, H. P.

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron.28(4), 1197–1208 (1992).
[CrossRef]

Jiang, H. H.

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Kang, H. X.

Knowles, D. S.

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron.28(4), 1197–1208 (1992).
[CrossRef]

Kück, S.

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

Lancaster, D. G.

D. G. Lancaster and J. M. Dawes, “Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr,Tm,Ho:YAG laser,” Opt. Laser Technol.30(2), 103–108 (1998).
[CrossRef]

Li, J. F.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Liu, J. J.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
[CrossRef]

Liu, J. S.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
[CrossRef]

Liu, W. P.

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Lubatschowski, H.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

Lukasiewicz, T.

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

Luo, J. Q.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Lupei, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
[CrossRef]

Luthy, W.

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

Ma, E.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Maffetone, J. P.

Miao, Y. Y.

Moulton, P. F.

Noginov, M. A.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Nunes, L. A. O.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

Oliveira, S. L.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

Ostroumov, V. G.

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

Reimann, U.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Ruderman, W.

Schneider, J.

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

Shcherbakov, I. A.

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Smirnov, V. A.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Sokólska, I.

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

Sun, C. L.

Sun, D. L.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Tang, Y.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
[CrossRef]

Tempus, M.

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

Tu, C. Y.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Vodopyanov, K. L.

Wang, G. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Wang, R.

Wang, S. F.

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Wang, W. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Wang, Y.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Weber, H. P.

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

Welling, H.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

Wetenkamp, L.

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

Xiao, J. Z.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Xu, D. G.

Xu, J. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Yao, J. Q.

Yin, S. T.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

You, Z. Y.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Zhang, B. Y.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Zhang, C. G.

Zhang, F.

Zhang, H. L.

Zhang, Q. L.

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, H. X. Kang, H. L. Zhang, M. J. Cheng, Q. L. Zhang, and S. T. Yin, “Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals,” Opt. Lett.38(8), 1218–1220 (2013).
[CrossRef] [PubMed]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

Zharikov, E. V.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Zhong, K.

Zhu, Z. J.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Zubenko, D. A.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

Zwieback, I.

Appl. Phys. B

I. Sokólska, E. Heumann, S. Kück, and T. Lukasiewicz, “Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm,” Appl. Phys. B71(6), 893–896 (2000).
[CrossRef]

IEEE J. Quantum Electron.

D. S. Knowles and H. P. Jenssen, “Unconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron.28(4), 1197–1208 (1992).
[CrossRef]

M. Tempus, W. Luthy, H. P. Weber, V. G. Ostroumov, and I. A. Shcherbakov, “2.79 µm YSGG:Cr:Er laser pumped at 790 nm,” IEEE J. Quantum Electron.30(11), 2608–2611 (1994).
[CrossRef]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 µm Er3+lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993).
[CrossRef]

Int J Infrared Milli.

J. Schneider, D. Hauschild, Ch. Frerichs, and L. Wetenkamp, “Highly efficient Er3+:Pr3+-codoped CW fluorozirconate fiber laser operating at 2.7 µm,” Int J Infrared Milli.15(11), 1907–1922 (1994).
[CrossRef]

J. Appl. Phys.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+and Yb3+ co-doped fluoroindogallate glasses,” J. Appl. Phys.90(7), 3308–3313 (2001).
[CrossRef]

J. Cryst. Growth

D. L. Sun, J. Q. Luo, Q. L. Zhang, J. Z. Xiao, W. P. Liu, S. F. Wang, H. H. Jiang, and S. T. Yin, “Growth and radiation resistant properties of 2.7–2.8 μm Yb,Er:GSGG laser crystal,” J. Cryst. Growth318(1), 669–673 (2011).
[CrossRef]

J. Lumin.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Crystal growth and optical properties of Cr3+,Er3+, RE3+:Gd3Ga5O12 (RE=Tm,Ho,Eu) for mid-IR laser applications,” J. Lumin.132(3), 693–696 (2012).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

Y. Wang, Z. Y. You, J. F. Li, Z. J. Zhu, E. Ma, and C. Y. Tu, “Spectroscopic investigations of highly doped Er3+:GGG and Er3+/Pr3+:GGG crystals,” J. Phys. D Appl. Phys.42(21), 215406 (2009).
[CrossRef]

Laser Phys.

G. Gross, A. L. Denisove, E. V. Zharikov, D. A. Zubenko, M. A. Noginov, U. Reimann, V. A. Smirnov, G. Huber, and I. A. Shcherbakov, “Depopulation of lower laser level 4I13/2 Er3+ in YSGG:Cr:Er,” Laser Phys.1(1), 52–56 (1991).

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79 µm,” Laser Phys.18(10), 1124–1127 (2008).
[CrossRef]

Opt. Commun.

J. Y. Gao, Q. L. Zhang, D. L. Sun, J. Q. Luo, W. P. Liu, and S. T. Yin, “Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal,” Opt. Commun.285(21-22), 4420–4426 (2012).
[CrossRef]

J. K. Chen, D. L. Sun, J. Q. Luo, J. Z. Xiao, R. Q. Dou, and Q. L. Zhang, “Er3+ doped GYSGG crystal as a new laser material resistant to ionizing radiation,” Opt. Commun.301–302, 84–87 (2013).
[CrossRef]

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 µm CrEr:YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun.125(1–3), 90–94 (1996).
[CrossRef]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun.284(24), 5734–5737 (2011).
[CrossRef]

Opt. Laser Technol.

D. G. Lancaster and J. M. Dawes, “Thermal-lens measurement of a quasi steady-state repetitively flashlamp-pumped Cr,Tm,Ho:YAG laser,” Opt. Laser Technol.30(2), 103–108 (1998).
[CrossRef]

Opt. Lett.

Other

B. J. Dinerman, J. Harrison, and P. F. Moulton, Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals, in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994) pp. 168–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy transfer diagram between Er3+ and Pr3+ ions.

Fig. 2
Fig. 2

Photograph of as-grown Er,Pr:GYSGG laser crystal.

Fig. 3
Fig. 3

Experimental setup of the Er,Pr:GYSGG laser.

Fig. 4
Fig. 4

Absorption spectrum of Er,Pr:GYSGG crystal. Inset: absorption cross section within the range of 950–990 nm.

Fig. 5
Fig. 5

Fluorescence spectrum of Er,Pr:GYSGG crystal excited by a 968 nm LD. Inset: emission cross section curve.

Fig. 6
Fig. 6

Fluorescence decay curves of Er,Pr:GYSGG crystal.

Fig. 7
Fig. 7

Dependence of laser output energy with different transmissions of the output coupler in the CW mode.

Fig. 8
Fig. 8

Laser output power versus input power for different cavity lengths.

Fig. 9
Fig. 9

Laser output energy versus input energy at different repetition rates.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ em (λ)= λ 5 I(λ) 8π n 2 c τ m λI(λ)dλ
η τ =1 τ 1 τ 2

Metrics