Abstract

We demonstrate stable and tunable light emission in ultraviolet to near infrared regime by using annealed SiOx sample. By adjusting the ratio of Si and O of SiOx, different wavelengths such as ultraviolet, visible and near infrared photoluminescence can be tuned. From the results of transmission electron microscope, various sizes (1~4 nm) of the embedded Si nanoparticles were formed. Nanoparticles with smaller sizes were indeed formed for UV-blue emitting samples and the origin of light emission may be misattributed to the quantum confinement effects. However, we found the efficient and stable light emission in UV-blue regime, with lifetime on the order of nanoseconds, is dominantly from the defects.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
    [CrossRef]
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
    [CrossRef]
  3. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
    [CrossRef] [PubMed]
  4. H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
    [CrossRef]
  5. J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
    [CrossRef]
  6. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
    [CrossRef] [PubMed]
  7. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
    [CrossRef] [PubMed]
  8. A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
    [CrossRef]
  9. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
    [CrossRef]
  10. D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
    [CrossRef]
  11. G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
    [CrossRef]
  12. A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics3(1), 032501 (2009).
    [CrossRef]
  13. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
    [CrossRef]
  14. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
    [CrossRef] [PubMed]
  15. B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
    [CrossRef]
  16. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
    [CrossRef] [PubMed]
  17. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
    [CrossRef] [PubMed]
  18. X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
    [CrossRef]
  19. B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express18(5), 4449–4456 (2010).
    [CrossRef] [PubMed]
  20. L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
    [CrossRef]
  21. M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
    [CrossRef]
  22. K. Y. Kuo, S. W. Hsu, P. R. Huang, W. L. Chuang, C. C. Liu, and P. T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express20(10), 10470–10475 (2012).
    [CrossRef] [PubMed]
  23. C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010).
    [CrossRef]
  24. V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express17(2), 520–527 (2009).
    [CrossRef] [PubMed]
  25. C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express21(1), 391–403 (2013).
    [CrossRef] [PubMed]
  26. G. R. Lin, C. W. Lian, C. L. Wu, and Y. H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express18(9), 9213–9219 (2010).
    [CrossRef] [PubMed]
  27. R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope. (Plenum Press, 1996).
  28. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
    [CrossRef]
  29. S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
    [CrossRef] [PubMed]
  30. S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
    [CrossRef]
  31. X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
    [CrossRef]
  32. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, in Multiphoton Microscopy in the Biomedical Sciences V, edited by A. Periasamy and P. T. C. So 5700, 171 (2005).
  33. M. Schmidt, J. Heimann, R. Scholz, V. Y. Timoshenko, M. G. Lisachenko, and M. Zacharias, in Advanced Luminescent Materials and Quantum Confinement II, edited by M. Cahay, J. P. Leburton, D. J. Lockwood et al. (Electrochemical Society, Pennington, 2002), p.83.
  34. R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B81(24), 245307 (2010).
    [CrossRef]
  35. K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2010 (5)

2009 (4)

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express17(2), 520–527 (2009).
[CrossRef] [PubMed]

A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics3(1), 032501 (2009).
[CrossRef]

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

2007 (2)

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

2005 (1)

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

2004 (1)

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

2002 (2)

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

1999 (1)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

1997 (2)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
[CrossRef]

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

1996 (3)

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
[CrossRef]

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
[CrossRef] [PubMed]

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

1994 (2)

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

1993 (3)

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

1992 (1)

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

Ahmed, K.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Averboukh, B.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Banks, J.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Bao, X. M.

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

Baribeau, J. M.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
[CrossRef] [PubMed]

Ben Assayag, G.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Blasing, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Bonafos, C.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Bongiorno, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

Boninelli, S.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

Brewer, L.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Bsiesy, A.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Calcott, P. D. J.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
[CrossRef]

Canham, L. T.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

Carrada, M.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Carroll, M. S.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Chang, C. H.

C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010).
[CrossRef]

Cheah, K. W.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Cheng, C. H.

Cherkashin, N.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Cho, E. C.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Cho, Y. H.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Chu, P. K.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Chuang, W. L.

Claverie, A.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Coffin, H.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Colliex, C.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Cullis, A. G.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
[CrossRef]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Dohnalová, K.

Duan, J. Q.

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

Dunn, R.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Futagi, T.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Gao, T.

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

Gaspard, F.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Godefroo, S.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Green, M. A.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Guerra, R.

R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B81(24), 245307 (2010).
[CrossRef]

Hannaford, P.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Hao, X. J.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

Hayne, M.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

He, J. H.

C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010).
[CrossRef]

Heitmann, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Herino, R.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Hoff, A. M.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Horrocks, B. R.

Hsu, S. W.

Huang, P. R.

Huber, R.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Iacona, F.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

Jivanescu, M.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Kahler, U.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Kanemitsu, Y.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

Khriachtchev, L.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

Koch, F.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

Kondo, M.

Kontkiewicz, A. J.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Kontkiewicz, A. M.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Koshida, N.

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
[CrossRef]

Kovalev, D. I.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

Koyama, H.

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
[CrossRef]

Kuo, K. Y.

Lagowski, J.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Lahtinen, J.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

Lai, B. H.

Lannoo, M.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Lebedev, O. I.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Lee, P. T.

Li, H.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Li, S. H.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Lian, C. W.

Lien, Y. C.

Ligeon, M.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Lin, G. R.

Lin, J.

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

Lin, Y. H.

Little, R.

Liu, C. C.

Liu, X. N.

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

Lockwood, D. J.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
[CrossRef] [PubMed]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
[CrossRef] [PubMed]

Ma, Z. C.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Macfarlane, R. M.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Malý, P.

Mariotti, D.

Matsumoto, T.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Mimura, H.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Misiewicz, J.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

Mizuno, H.

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
[CrossRef]

Moshchalkov, V. V.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Mukherjee, P.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Muller, F.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Muschik, T.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

Nikitin, T.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

Novikov, S.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

Nowak, G.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Ogawa, T.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

Ondic, L.

Ossicini, S.

R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B81(24), 245307 (2010).
[CrossRef]

Pai, Y. H.

B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express18(5), 4449–4456 (2010).
[CrossRef] [PubMed]

C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010).
[CrossRef]

Pan, W.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Pelant, I.

Petrovakoch, V.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

Podhorodecki, A. P.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

Priolo, F.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

Qin, G. G.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

Qiu, T.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Romestain, R.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Sa'ar, A.

A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics3(1), 032501 (2009).
[CrossRef]

Sakthivel, P.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Schamm, S.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Schmidt, M.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Scholz, R.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Sen, S.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Shen, Y. R.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Shen, Y. S.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

Sheng, J. J.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Shiraishi, K.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

Siejka, J.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Šiller, L.

Siu, G. G.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Spinella, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

Stesmans, A.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Svrcek, V.

Takeda, K.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

Tencé, M.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Tong, S.

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

Trojánek, F.

Van Dao, L.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Van Tendeloo, G.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

Velagapudi, R.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

Verley, J. C.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Vial, J. C.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Wen, X. M.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Witanachchi, S.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

Wu, C. L.

Wu, X. L.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Yang, X.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Yang, Y. M.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

Yao, G. Q.

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

Yaroshetzkii, I. D.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

Zacharias, M.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

Zatryb, G.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

Žídek, K.

Zong, W. H.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

Acta Mater. (1)

C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010).
[CrossRef]

Appl. Phys. Lett. (9)

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009).
[CrossRef]

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997).
[CrossRef]

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005).
[CrossRef]

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994).
[CrossRef]

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994).
[CrossRef]

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996).
[CrossRef]

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002).
[CrossRef]

J. Appl. Phys. (3)

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002).
[CrossRef]

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997).
[CrossRef]

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004).
[CrossRef]

J. Nanophotonics (1)

A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics3(1), 032501 (2009).
[CrossRef]

Nanotechnology (2)

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009).
[CrossRef] [PubMed]

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007).
[CrossRef]

Nat. Nanotechnol. (1)

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007).
[CrossRef]

Opt. Express (6)

Phys. Rev. B (2)

R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B81(24), 245307 (2010).
[CrossRef]

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993).
[CrossRef] [PubMed]

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999).
[CrossRef]

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996).
[CrossRef] [PubMed]

Ultramicroscopy (1)

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008).
[CrossRef] [PubMed]

Other (3)

R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope. (Plenum Press, 1996).

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, in Multiphoton Microscopy in the Biomedical Sciences V, edited by A. Periasamy and P. T. C. So 5700, 171 (2005).

M. Schmidt, J. Heimann, R. Scholz, V. Y. Timoshenko, M. G. Lisachenko, and M. Zacharias, in Advanced Luminescent Materials and Quantum Confinement II, edited by M. Cahay, J. P. Leburton, D. J. Lockwood et al. (Electrochemical Society, Pennington, 2002), p.83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) EFTEM-SI image of Sample C with the energy-selection slit tuned to the energy loss region of 16 ~18 eV. Circle 1 indicates a region containing Si NP and circle 2 indicates a region of the surrounding SiOx. Their corresponding EELS spectra are shown in (b). Histogram of Si NP size of (c) Sample A (d) Sample B and (e) Sample C. The particle number is obtained from a 20 nm x 100 nm TEM image.

Fig. 2
Fig. 2

The PL spectra of all studied samples, where curves A-D denote Samples A-D, respectively.

Fig. 3
Fig. 3

HRTEM images of (a) Sample A and (b) Sample C. Their corresponding FFT patterns are shown in (c) and (d). The location of Si NPs is indicated by the dash circles in (a) and (b).

Fig. 4
Fig. 4

The PLE spectra of Sample A monitored at the emission wavelength of (a) 340nm and (b) 410 nm. (c) The PLE spectrum of Sample C monitored at the emission wavelength of 620 nm. All the spectra were normalized to the maximum at ~275 nm for comparison.

Fig. 5
Fig. 5

(a) TRPL traces of Sample A. The emission wavelengths measured in these traces are 275, 285, 295, 305, 315, 325, 335, 345 nm, respectively, from bottom to top. (b) The averaged PL lifetimes as a function of the emission photon energy. Note the solid line is for eye-guiding purpose only.

Tables (1)

Tables Icon

Table 1 The growth condition of the studied samples and their optical properties.

Metrics