Abstract

The intrinsic photo-response of chemical vapor deposited (CVD) graphene photodetectors were investigated after eliminating the influence of photodesorption using an atomic layer deposited (ALD) Al2O3 passivation layer. A general model describing the intrinsic photocurrent generation in a graphene is developed using the relationship between the device dimensions and the level of intrinsic photocurrent under UV illumination.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
    [CrossRef] [PubMed]
  2. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  3. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
    [CrossRef] [PubMed]
  4. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
    [CrossRef] [PubMed]
  5. T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
    [CrossRef] [PubMed]
  6. K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
    [CrossRef]
  7. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
    [CrossRef]
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  10. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
    [CrossRef] [PubMed]
  11. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in Electron Devices Meet. Iedm 2012 IEEE Int., 33.8.1–33.8.3 (2012)
    [CrossRef]
  12. Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
    [CrossRef] [PubMed]
  13. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
    [CrossRef]
  14. Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
    [CrossRef]
  15. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
    [CrossRef]
  16. M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
    [CrossRef] [PubMed]
  17. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
    [CrossRef] [PubMed]
  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
    [CrossRef] [PubMed]
  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
    [CrossRef] [PubMed]
  20. P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
    [CrossRef] [PubMed]
  21. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
    [CrossRef]
  22. C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
    [CrossRef]
  23. C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
    [CrossRef]
  24. K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
    [CrossRef]
  25. T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
    [CrossRef] [PubMed]
  26. S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
    [CrossRef]
  27. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
    [CrossRef] [PubMed]
  28. Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
    [CrossRef]
  29. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
    [CrossRef]
  30. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
    [CrossRef] [PubMed]
  31. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
    [CrossRef] [PubMed]
  32. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
    [CrossRef] [PubMed]
  33. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
    [CrossRef]
  34. H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
    [CrossRef] [PubMed]
  35. A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
    [CrossRef] [PubMed]
  36. K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
    [CrossRef]
  37. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
    [CrossRef]
  38. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
    [CrossRef]
  39. W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
    [CrossRef] [PubMed]
  40. J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
    [CrossRef]
  41. L. C. Liou and B. Nabet, “Simple analytical model of bias dependence of the photocurrent of metal-semiconductor-metal photodetectors,” Appl. Opt.35(1), 15–23 (1996).
    [CrossRef] [PubMed]

2013 (3)

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

2012 (5)

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

2011 (5)

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
[CrossRef] [PubMed]

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

2010 (6)

T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
[CrossRef] [PubMed]

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

2009 (11)

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
[CrossRef] [PubMed]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

2008 (6)

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

2002 (1)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

2001 (1)

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

1996 (1)

Aguirre, C. M.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

Aguirre-Tostado, F. S.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Ahn, Y. H.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Arnold, M. S.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

Avouris, P.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Berciaud, S.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Bonn, M.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Brocks, G.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Brus, L. E.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Cao, J.

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Centeno, A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Charlie Johnson, A. T.

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

Chen, H.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Chen, R. J.

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Cheng, Y.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Cho, C.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

Choe, M.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Choi, K. J.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Dai, H.

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Davila, Y.

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

Desjardins, P.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Eklund, P. C.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Fang, W.

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Flynn, G. W.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Franklin, N. R.

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Freitag, M.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Giovannetti, G.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Golizadeh-Mojarad, R.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Gopalan, P.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Guillemette, J.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

Gutierrez, H. R.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Hinkle, C. L.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Hone, J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Hong, B. H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Hong, W.-K.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Huang, C.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

Hughes, G. J.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Hwang, H. J.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Jensen, S. A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Ji, Y.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Jo, G.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Joshi, P.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Jung, M. H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Kahng, Y. H.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Kang, C. G.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

Karpan, V. M.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Kelly, P. J.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Khomyakov, P. A.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Kim, G.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Kim, H. C.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Kim, J.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Kim, J.-H.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Kim, M.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

Kim, P.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Kim, Y.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

Kind, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Kita, K.

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Klauk, H.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Klitzing, K. V.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

Knorr, A.

T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
[CrossRef] [PubMed]

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Kong, K.-J.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Koppens, F. H. L.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Krauss, B.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

Lafkioti, M.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

Lai, K. W. C.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Lapointe, F.

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

Law, M.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Lee, B.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Lee, B. H.

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Lee, K.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Lee, S.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Lee, S. K.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Lee, T.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Lee, Y. G.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

Levesque, P. L.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

Lévesque, P. L.

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

Levitov, L. S.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Li, G.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Li, L.-J.

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Lim, S. K.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Lin, Y. M.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Liou, L. C.

Liu, H.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Liu, L.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Lohmann, T.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
[CrossRef] [PubMed]

Low, T.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

Luo, Z.

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

Malic, E.

T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
[CrossRef] [PubMed]

Martel, R.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

McDonnell, S.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Messer, B.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Milojevic, M.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Mueller, T.

A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
[CrossRef] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Nabet, B.

Nagashio, K.

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Nishimura, T.

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Paillet, M.

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

Park, E.

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

Park, J.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

Park, W.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Perebeinos, V.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Pesquera, A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Pinto, N. J.

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Romero, H. E.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Ruiz-Vargas, C.

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Ryu, S.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Sabri, S. S.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

Safron, N. S.

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

Shen, N.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Shi, Y.

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Siaj, M.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Smet, J. H.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
[CrossRef] [PubMed]

Sofo, J. O.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

Song, J. C. W.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Sonnet, A. M.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

St-Antoine, B. C.

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Sun, P.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Szkopek, T.

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

Tadigadapa, S. A.

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Tielrooij, K. J.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Tombler, T. W.

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Toriumi, A.

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Tsang, J.

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Unterrainer, K.

A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
[CrossRef] [PubMed]

Urich, A.

A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

van den Brink, J.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Vogel, E. M.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

von Klitzing, K.

T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
[CrossRef] [PubMed]

Wallace, R. M.

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

Wang, D.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Wang, K.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wei, J.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Wejinya, U. C.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Winzer, T.

T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
[CrossRef] [PubMed]

Wu, D.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Xi, N.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Xia, F.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Yamashita, T.

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Yan, H.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Yang, P.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Yee, K.-J.

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Yoon, J.

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Yu, Y.-J.

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, J.

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

Zhang, K.

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Zhang, W.

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Zhong, M.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Zhu, H.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Zhu, M.

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Zschieschang, U.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

Zurutuza Elorza, A.

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

ACS Nano (2)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012).
[CrossRef] [PubMed]

H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (2)

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009).
[CrossRef]

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009).
[CrossRef]

C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008).
[CrossRef]

P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012).
[CrossRef]

Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012).
[CrossRef]

R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001).
[CrossRef]

Carbon (3)

K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011).
[CrossRef]

Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013).
[CrossRef]

C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013).
[CrossRef]

IEEE Trans. NanoTechnol. (1)

J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011).
[CrossRef]

Nano Lett. (11)

T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009).
[CrossRef] [PubMed]

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010).
[CrossRef] [PubMed]

A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011).
[CrossRef] [PubMed]

F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009).
[CrossRef] [PubMed]

M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012).
[CrossRef] [PubMed]

J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009).
[CrossRef] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009).
[CrossRef] [PubMed]

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011).
[CrossRef] [PubMed]

S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010).
[CrossRef]

T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Nat. Photonics (3)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Nat. Phys. (1)

K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013).
[CrossRef]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008).
[CrossRef] [PubMed]

Science (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009).
[CrossRef] [PubMed]

Small (1)

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008).
[CrossRef]

Other (1)

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in Electron Devices Meet. Iedm 2012 IEEE Int., 33.8.1–33.8.3 (2012)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Top-down SEM image of a graphene photodetector. (b) Raman spectra of the graphene channel. The inset is a SEM image of the graphene channel that magnifies the white circle in (a). (c) The DC Id-Vg curve of graphene photodetector before the passivation. The graphene channel is exposed to air ambient. (d) The DC Id-Vg curve of the graphene photodetector after the passivation and 200 °C PDA. The graphene channel is passivated with Al2O3.

Fig. 2
Fig. 2

Photo-response of (a) an air-exposed graphene photodetector and (b) a Al2O3-passivated graphene photodetector with a UV on/off cycle of 20 seconds (200 μW/cm2 power and 365 nm wavelength UV lamp was used and the graphene photodetectors were biased with Vd = 10 mV and Vg = 0 V).

Fig. 3
Fig. 3

Band profile of the graphene photodetector (a) exposed to air ambient without illumination, (b) exposed to air ambient under illumination and (c) after Al2O3 passivation under illumination. ΔΦ (ΔE) denotes the Fermi level shift of graphene due to metal-induced doping (external doping). Shaded area adjacent to the electrode is the transition region (LTS, LTD), black (open) circle denotes electron (hole), arrow denotes the direction in which the carrier is moving, and I PD ( I PS ) means the direction of the drain (source) side photocurrent. (d) The photocurrent of Al2O3 passivated graphene photodetector measured while modulating the back gate bias with 100 mV of drain bias. (e) Schematic illustration of carrier generation and recombination, photodesorption and re-adsorption of an air-exposed area and Al2O3 passivated area of graphene photodetector under illumination. Red (blue) circle denotes electron (hole). Only photo generated carriers within the drift distance from the electrode can contribute to the photocurrent. UV-induced photodesorption occurred at the air-exposed graphene photodetector resulting hole extraction from the graphene.

Fig. 4
Fig. 4

(a) Variation in photocurrent generation as a function of the illumination intensity. (b) 1Hz and 20-second on/off characteristics of graphene photodetectors. The inset is on/off characteristics at 1Hz that magnifies the red rectangle in (b). (c) Photocurrent generation in an Al2O3 passivated graphene measured at different channel width, (d) Photocurrent generation in an Al2O3 passivated graphene measured at different length. Power = 200 μW/cm2, wavelength = 365nm, and Vd = 100 mV were used at for (c) and (d) measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n= ε ε 0 e t ox ( V Dirac V 0 )
n= E 0 E F g(E)dE
J=qG( d 1 d 2 )qG L p tanh( x 2 x 1 L P )+qGfsech( x 2 x 1 L P )+qGf
J=qG( d 1 d 2 )qGτ( v 1 v 2 )
I ph =α W eff qGτ( v 1 v 2 )

Metrics