Abstract

A solitary monolithic integrated semiconductor laser (MISL) chip with a size of 780 micrometer is designed and fabricated for broadband chaos generation. Such a MISL chip consists of a DFB section, a phase section and an amplification section. Test results indicate that under suitable operation conditions, this laser chip can be driven into broadband chaos. The generated chaos covers an RF frequency range, limited by our measurement device, of 26.5GHz, and possesses significant dimension and complexity. Moreover, the routes into and out of chaos are also characterized through extracting variety dynamical states of temporal waveforms, phase portraits, RF spectra and statistical indicators.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
    [CrossRef] [PubMed]
  2. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
    [CrossRef]
  3. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
    [CrossRef] [PubMed]
  4. X. Z. Li and S. C. Chan, “Random bit generation using an optically injected semiconductor laser in chaos with oversampling,” Opt. Lett.37(11), 2163–2165 (2012).
    [CrossRef] [PubMed]
  5. F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004).
    [CrossRef]
  6. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
    [CrossRef]
  7. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, 2nd ed. (Springer-Verlag, 2008).
  8. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
    [CrossRef]
  9. C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
    [CrossRef]
  10. Y. H. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.29(11), 1215–1217 (2004).
    [CrossRef] [PubMed]
  11. S. Y. Xiang, W. Pan, L. Yan, B. Luo, X. Zou, N. Jiang, and K. Wen, “Influence of polarization mode competition on chaotic unpredictability of vertical-cavity surface-emitting lasers with polarization-rotated optical feedback,” Opt. Lett.36(3), 310–312 (2011).
    [CrossRef] [PubMed]
  12. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009).
    [CrossRef] [PubMed]
  13. F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003).
    [CrossRef]
  14. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
    [CrossRef] [PubMed]
  15. J. G. Wu, Z. M. Wu, G. Q. Xia, and G. Y. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express20(2), 1741–1753 (2012).
    [CrossRef] [PubMed]
  16. M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
    [CrossRef]
  17. O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
    [CrossRef]
  18. S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
    [CrossRef]
  19. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
    [CrossRef] [PubMed]
  20. S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
    [CrossRef] [PubMed]
  21. M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
    [CrossRef] [PubMed]
  22. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
    [CrossRef] [PubMed]
  23. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express18(5), 5188–5198 (2010).
    [CrossRef] [PubMed]
  24. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010).
    [CrossRef] [PubMed]
  25. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011).
    [CrossRef] [PubMed]
  26. J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).
  27. Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser,” J. Lightwave Technol.28(17), 2521–2525 (2010).
    [CrossRef]
  28. P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983).
    [CrossRef]
  29. P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983).
    [CrossRef]
  30. P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983).
    [CrossRef]

2013 (1)

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

2012 (2)

2011 (2)

2010 (3)

2009 (2)

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009).
[CrossRef] [PubMed]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

2004 (4)

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

Y. H. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.29(11), 1215–1217 (2004).
[CrossRef] [PubMed]

2003 (2)

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003).
[CrossRef]

J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).

2002 (2)

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

1995 (1)

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

1992 (1)

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

1983 (3)

P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983).
[CrossRef]

Alsing, P. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Arai, K.

Argyris, A.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Aviad, Y.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Barbarin, Y.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Bauer, S.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Bente, E. A.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Beri, S.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Bogris, A.

Brox, O.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Chan, S. C.

Chen, W. X.

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Davis, P.

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Deligiannidis, S.

Feng, G. Y.

Fischer, I.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

García-Ojalvo, J.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Gavrielides, A.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Grassberger, P.

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983).
[CrossRef]

Grivas, E.

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

Harayama, T.

Henneberger, F.

S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
[CrossRef] [PubMed]

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Hong, Y. H.

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Jiang, N.

Kanter, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Korneyev, N.

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Kreissl, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Lee, M. W.

Lenstra, D.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Li, X. Z.

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003).
[CrossRef]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003).
[CrossRef]

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Lou, C. Y.

Lu, Y.

J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).

Luo, B.

Mark, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

Masoller, C.

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
[CrossRef]

Mirasso, C. R.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
[CrossRef]

Mork, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

Mulet, J.

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
[CrossRef]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Nötzel, R.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Pan, J. Q.

Pan, W.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Pikasis, E.

Procaccia, I.

P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983).
[CrossRef]

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983).
[CrossRef]

Radziunas, M.

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

Reidler, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Rosenbluh, M.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Sahin, G.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Schikora, S.

S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
[CrossRef] [PubMed]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Y. H. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.29(11), 1215–1217 (2004).
[CrossRef] [PubMed]

Sieber, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

Simpson, T. B.

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

Smit, M. K.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Soriano, M. C.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

Spencer, P. S.

Sun, Y.

Sunada, S.

Syvridis, D.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express18(5), 5188–5198 (2010).
[CrossRef] [PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Tromborg, B.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

Tsuzuki, K.

Uchida, A.

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Ushakov, O. V.

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

Wang, L.

Wang, W.

Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser,” J. Lightwave Technol.28(17), 2521–2525 (2010).
[CrossRef]

J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).

Wen, K.

Wu, J. G.

Wu, Z. M.

Wünsche, H. J.

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

Wünsche, H.-J.

S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
[CrossRef] [PubMed]

Xia, G. Q.

Xiang, S. Y.

Yan, L.

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Yousefi, M.

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).

Zhao, L. J.

Zhao, X. F.

Zou, X.

Chin. J. Semiconductors (1)

J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).

Electron. Lett. (1)

S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Europhys. Lett. (1)

O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003).
[CrossRef]

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008).
[CrossRef]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (2)

T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995).
[CrossRef] [PubMed]

P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004).
[CrossRef] [PubMed]

S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007).
[CrossRef] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008).
[CrossRef] [PubMed]

P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009).
[CrossRef] [PubMed]

Physica D (1)

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983).
[CrossRef]

Rev. Mod. Phys. (1)

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013).
[CrossRef]

Other (1)

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, 2nd ed. (Springer-Verlag, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photo of the MISL. (b) Schematic diagram of the MISL. (c) Measurement setup. ISO: isolator; BS: beam splitter; PD: photoelectric detector; OSA: optical spectrum analyzer; ESA: RF spectrum analyzer; OSC: wide-bandwidth oscilloscope. Dashed line: optical path; solid line: electrical path.

Fig. 2
Fig. 2

(a) Measured P-I curve. (b) Lasing optical spectra of MISL under different IDFB values and IP = IA = 0mA.

Fig. 3
Fig. 3

(a) Temporal waveform of output from MISL. (b) Phase portraits of output from MISL. (c) RF spectra of output from MISL, where the gray line is the noise floor of RF spectrum. (d) Optical spectra of output from MISL. The red labels the chaotic output from MISL while the blue labels the stable output from MISL.

Fig. 4
Fig. 4

Dynamical characteristics routes into and out of chaos for IDFB = 88mA, IP = 0mA, and IA varies from top to bottom as (a) 17mA, (b) 19mA, (c) 19.5mA, (d) 20.4mA, (e) 20.9mA and (f) 21mA, respectively. The first, second and third columns show the temporal waveforms, the phase portraits and the measured RF spectra, respectively, and the gray lines are the noise floor of RF spectrum. S: steady state; P1: period-one state; P2: period-two state; C: chaotic state; T: transition state.

Fig. 5
Fig. 5

Variation of correlation dimension D2 and Kolmogorov entropy K2 for IDFB = 88mA, IP = 0mA and IA is changed from 14mA to 26mA. The red circles represent D2, while the blue squares represent K2. Four different regions are identified and labeled as I, II, III and IV, respectively.

Metrics