Abstract

We report on the investigation on the resolution of optical sensors exploiting Bloch surface waves sustained by one dimensional photonic crystals. A figure of merit is introduced to quantitatively assess the performance of such sensors and its dependency on the geometry and materials of the photonic crystal. We show that the figure of merit and the resolution can be improved by adopting a full ellipsometric phase-sensitive approach. The theoretical predictions are confirmed by experiments in which, for the first time, such type of sensors are operated in the full ellipsometric scheme.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977).
    [CrossRef]
  2. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Acta. B105(2), 360–364 (2005).
    [CrossRef]
  3. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem.79(12), 4729–4735 (2007).
    [CrossRef] [PubMed]
  4. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express18(8), 8087–8093 (2010).
    [CrossRef] [PubMed]
  5. Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
    [CrossRef] [PubMed]
  6. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
    [CrossRef]
  7. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
    [CrossRef] [PubMed]
  8. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
    [CrossRef]
  9. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
    [CrossRef]
  10. A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B29(8), 1863–1874 (2012).
    [CrossRef]
  11. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
    [CrossRef]
  12. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
    [CrossRef]
  13. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
    [CrossRef]
  14. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
    [CrossRef] [PubMed]
  15. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
    [CrossRef]
  16. A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
    [CrossRef] [PubMed]
  17. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express17(23), 21191–21204 (2009).
    [CrossRef] [PubMed]
  18. S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
    [CrossRef] [PubMed]
  19. Y. H. Huang, H. P. Ho, S. Y. Wu, S. K. Kong, W. W. Wong, and P. Shum, “Phase sensitive SPR sensor for wide dynamic range detection,” Opt. Lett.36(20), 4092–4094 (2011).
    [CrossRef] [PubMed]
  20. Y. Shao, Y. Li, D. Gu, K. Zhang, J. Qu, J. He, X. Li, S.-Y. Wu, H.-P. Ho, M. G. Somekh, and H. Niu, “Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor,” Opt. Lett.38(9), 1370–1372 (2013).
    [CrossRef] [PubMed]
  21. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
    [CrossRef] [PubMed]
  22. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
    [CrossRef]
  23. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett.38(5), 616–618 (2013).
    [CrossRef] [PubMed]
  24. R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. B60(10), 1337–1350 (1970).
    [CrossRef]
  25. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).
  26. P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
    [CrossRef]
  27. E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
    [CrossRef]
  28. F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
    [CrossRef]
  29. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]

2013 (5)

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Y. Shao, Y. Li, D. Gu, K. Zhang, J. Qu, J. He, X. Li, S.-Y. Wu, H.-P. Ho, M. G. Somekh, and H. Niu, “Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor,” Opt. Lett.38(9), 1370–1372 (2013).
[CrossRef] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett.38(5), 616–618 (2013).
[CrossRef] [PubMed]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

2012 (7)

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B29(8), 1863–1874 (2012).
[CrossRef]

2011 (4)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
[CrossRef] [PubMed]

Y. H. Huang, H. P. Ho, S. Y. Wu, S. K. Kong, W. W. Wong, and P. Shum, “Phase sensitive SPR sensor for wide dynamic range detection,” Opt. Lett.36(20), 4092–4094 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2007 (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem.79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Acta. B105(2), 360–364 (2005).
[CrossRef]

2003 (1)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
[CrossRef]

1998 (1)

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

1977 (1)

1970 (1)

R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. B60(10), 1337–1350 (1970).
[CrossRef]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem.79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Bajoni, D.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

Baker, J. R.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Bertolotti, M.

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Brauer, A.

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Brunazzo, D.

Dacarro, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Danz, N.

De Leo, N.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

Delfan, A.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B29(8), 1863–1874 (2012).
[CrossRef]

Descrovi, E.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett.38(5), 616–618 (2013).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

Digregorio, G.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Divin, C.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Dominici, L.

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
[CrossRef]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Dostálek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Enrico, E.

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

Frascella, F.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Gabler, T.

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Galli, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
[CrossRef]

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Gerace, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

Giorgis, F.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Grigorenko, A. N.

Gu, D.

Guizzetti, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Guo, Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

He, J.

Herzig, H.

Ho, H. P.

Ho, H.-P.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
[CrossRef]

Hong, C.-S.

Horhold, H. H.

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Huang, B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Huang, Y. H.

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Kabashin, A. V.

Kaiser, N.

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
[CrossRef]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Kong, S. K.

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem.79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Lamberti, A.

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

Li, X.

Li, Y.

Liscidini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B29(8), 1863–1874 (2012).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

Maiti, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

Martin, O.

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Michelotti, F.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett.38(5), 616–618 (2013).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express3(10), 2405–2410 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Moi, V.

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

Munzert, P.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett.38(5), 616–618 (2013).
[CrossRef] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
[CrossRef]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Mysore, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Nakagawa, W.

Ng, S. P.

Niu, H.

Norris, T. B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Patrini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Patskovsky, S.

Piliarik, M.

Pirotta, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Pirri, C. F.

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

Qu, J.

Quaglio, M.

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. Martin, and H. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B27(8), 1617–1625 (2010).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Ricciardi, S.

Rivolo, P.

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012).
[CrossRef] [PubMed]

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Acta. B105(2), 360–364 (2005).
[CrossRef]

Sanvitto, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
[CrossRef]

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

Sfez, T.

Shao, Y.

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Acta. B105(2), 360–364 (2005).
[CrossRef]

Shum, P.

Sinibaldi, A.

Sipe, J. E.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

A. Delfan, M. Liscidini, and J. E. Sipe, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures,” J. Opt. Soc. Am. B29(8), 1863–1874 (2012).
[CrossRef]

Somekh, M. G.

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

Summonte, C.

Taggi, V.

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

Thomas, T. P.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

Ulrich, R.

R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. B60(10), 1337–1350 (1970).
[CrossRef]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

Walker, G. C.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Wong, W. W.

Wu, C. M. L.

Wu, S. Y.

Wu, S.-Y.

Xu, X. G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Yariv, A.

Ye, J. Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
[CrossRef]

Yeh, P.

Yu, L.

Zhang, K.

Anal. Chem. (2)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem.79(12), 4729–4735 (2007).
[CrossRef] [PubMed]

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.99(4), 043302 (2011).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface waves polaritons,” Appl. Phys. Lett.98(12), 121118 (2011).
[CrossRef]

E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, and C. F. Pirri, “Surface label-free sensing by means of a fluorescent multilayered photonic structure,” Appl. Phys. Lett.101(13), 131105 (2012).
[CrossRef]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron.43, 108–114 (2013).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

F. Michelotti, V. Taggi, M. Bertolotti, T. Gabler, H. H. Horhold, and A. Brauer, “Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects,” J. Appl. Phys.83(12), 7886–7895 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. C (1)

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C117(13), 6821–6825 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys.12(2), 502–506 (2009).
[CrossRef] [PubMed]

Sens. Act. B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B54(1-2), 3–15 (1999).
[CrossRef]

Sens. Acta. B (3)

P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Acta. B161(1), 1046–1052 (2012).
[CrossRef]

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Acta. B105(2), 360–364 (2005).
[CrossRef]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Acta. B174, 292–298 (2012).
[CrossRef]

Sensors (Basel Switzerland) (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, Sensors (Basel Switzerland)13, 2566–2578 (2013).

Surf. Coat. Tech. (1)

P. Munzert, U. Schulz, and N. Kaiser, “Transparent thermoplastic polymers in plasma assisted coating processes,” Surf. Coat. Tech.174–175, 1048–1052 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Typical transverse BSW intensity distribution. (b) Experimental setup used to characterize the performance of optical biosensors exploiting the BSW excitation. (c) Typical angular reflectance spectrum measured at λ0 showing the BSW resonance. The external medium is doubly deionized water.

Fig. 2
Fig. 2

Numerical calculations of the angularly resolved TE reflectance of a 1DPC illuminated in the Kretschmann configuration. Different numbers of repetition units N, form 2 to 5 are considered. The extinction coefficient κL ranges from 0 to 10−3.

Fig. 3
Fig. 3

Numerically calculated TE reflectance spectrum RTE(θ) of a 1DPC with N = 4. The gray curves were obtained when the external medium is doubly deionized water, the colored curves were calculated for a slight positive perturbation ΔnEXT. The red curve corresponds to κL = 2.4*10−5 and the blue to κL = 2.4*10−4.

Fig. 4
Fig. 4

Numerically calculated FOM for the 1DPC defined in the text and with different values of the number of repetition units N.

Fig. 5
Fig. 5

Numerically calculated RTE, RTM, RCROSS reflectance for the 1DPC as defined in the text. The figure on the right is a zoom about the BSW resonance angle.

Fig. 6
Fig. 6

Numerically calculated FOMCROSS for the 1DPC as defined in the text and for three different values of the number of repetition units N = 3, 4, 5.

Fig. 7
Fig. 7

Experimental measurement of RTE as a function of θ for a four periods (N = 4) 1DPC in ddH2O (black solid circles). The red solid line is the numerical fit. Inset: Zoom of the BSW resonance. The blue curve is the numerical simulation without assuming changes of the refractive index of the last layer due to water adsorption.

Fig. 8
Fig. 8

(a) Experimentally measured RCROSS for the fabricated 1DPC described in the text, with N = 4 repetition units. The curves were obtained for several different values of the phase Ψ between the TE and TM components set by controlling the LCR voltage: (black) Ψ = 0 deg, (red) Ψ = 30 deg, (blue) Ψ = 45 deg, (green) Ψ = 60 deg, (grey) Ψ = 90 deg. The solid lines are guide for the eyes. (b) Numerical calculations carried out by the TMM, assuming the design 1DPC structure with values for the complex indices and thicknesses obtained by fitting data in Fig. 7, for different values of Ψ = 0, 30, 45, 60 90 deg. Same color codes as for the experimental data.

Fig. 9
Fig. 9

(a) Experimentally measured reflectance variations at λ = 543nm for different glucose concentrations in the test solutions. Full ellipsometric configuration operating in the working point θWP. Inset: Angularly resolved RCROSS and position of the working point θWP. (b) Experimental values for RCROSS as a function of the refractive index change of the glucose solution collected at Ψ = 45deg (dots). The red solid curve is the fit with a quadratic function and the black dashed curve is the linear fit in the limit of small Δn.

Tables (3)

Tables Icon

Table 1 Numerically calculated sensitivity, FOM and optimum extinction coefficient of the low index layers κL,OPT for four different 1DPC with a different number of repetition units N. Single polarization configuration. In case of N = 2 no local extrema have been obtained within the calculation range.

Tables Icon

Table 2 Numerically calculated figure of merit for the full ellipsometric configuration and the corresponding ratio to the FOM for the single polarization configuration. Three cases with different values of the 1DPC number of repetition units N are considered.

Tables Icon

Table 3 Experimentally estimations for FOM and resolution ΔnTE,MIN in single polarization (TE) BSW sensors. The values are for the real sensor with κL = 1.2*10−5 (as shown in Fig. 7) and for a sensor with optimised κL = 1.2*10−4 as reported in Table 1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ R TE = d R TE dθ | WP d θ BSW dn Δn,
Δ R TE = 1 0.77 D W SΔn,
FO M TE =S D W ,
Δ n MIN =0.77 Δ R TE,MIN FO M TE ,
r ˜ TE,TM = r TE,TM e j φ TE,TM
R CROSS = = 1 4 { r TE 2 + r TM 2 +2 r TE r TM cos( φ TE φ TM +Ψ) }= = 1 4 { R TE + R TM +2 R TE R TM cos( φ TE φ TM +Ψ) }
Δ R CROSS = d R CROSS dθ | WP d θ BSW dn Δn
FO M CROSS =0.77S d R CROSS dθ | WP
FO M CROSS , EXP =0.77S d R CROSS dθ | WP =219RI U 1
Δ n MIN =0.77 Δ R MIN FO M CROSS,EXP =7 10 6 RIU/H z 1/2

Metrics