Abstract

We analyze the absorption coefficient of planarized silicon-on-insulator waveguides coated by close packed mono- and multilayers of colloidal PbS/CdS quantum dots (QDs). Experimental data clearly show the influence of the QDs on the waveguide absorbance around 1500 nm, where we find that QDs absorb stronger in thicker layers. To simulate the absorption coefficient of QD functionalized waveguides, the QD layer is replaced by an effective medium with a dielectric function determined by dipolar coupling between neighbouring QDs. Using the host dielectric constant εh as an adjustable parameter, excellent agreement with the experimental results is obtained. In this way, the increase in absorption cross section with layer thickness can be traced back to an increasing εh. We argue that this reflects the decreasing influence of the surroundings on the εh, which therefore evolves from an extrinsic property for monolayers to a more intrinsic film property for multilayers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Accounts of Chemical Research3, 773–780 (2000).
    [CrossRef]
  2. A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
    [CrossRef]
  3. B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
    [CrossRef] [PubMed]
  4. J. Heo, Z. Jiang, J. Xu, and P. Bhattacharya, “Coherent and directional emission at 1.55 mu m from PbSe colloidal quantum dot electroluminescent device on silicon,” Opt. Express19, 26394–26398 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-27-26394 .
    [CrossRef]
  5. N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.
  6. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14, 3273–3281 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3273 .
    [CrossRef] [PubMed]
  7. J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
    [CrossRef]
  8. I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
    [CrossRef]
  9. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
    [CrossRef] [PubMed]
  10. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
    [CrossRef] [PubMed]
  11. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
    [CrossRef]
  12. J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.
  13. B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
    [CrossRef]
  14. Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012).
    [CrossRef]
  15. P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
    [CrossRef] [PubMed]
  16. See the Appendix section for a thorough discussion of the synthesis, dielectric function, coupled dipole model, experimental and simulated results.
  17. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
    [CrossRef] [PubMed]
  18. Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.
  19. B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010).
    [CrossRef]
  20. K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
    [CrossRef] [PubMed]
  21. Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
    [CrossRef] [PubMed]
  22. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
    [CrossRef]
  23. R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009).
    [CrossRef] [PubMed]
  24. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
    [CrossRef] [PubMed]
  25. A. Neeves and M. Birnboim, “Composite structures for the enhancement of nonlinear-opitcal susceptibility,” J. Opt. Soc. Am. B6, 787–796 (1989).
    [CrossRef]
  26. S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995).
    [CrossRef]
  27. A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett.386, 25–31 (2004).
    [CrossRef]
  28. J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
    [CrossRef]
  29. R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
    [CrossRef]
  30. C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
    [CrossRef] [PubMed]
  31. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
    [CrossRef]

2013 (1)

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

2012 (6)

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012).
[CrossRef]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

2011 (1)

2010 (5)

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010).
[CrossRef]

2009 (4)

R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009).
[CrossRef] [PubMed]

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
[CrossRef]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

2008 (2)

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

2006 (2)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14, 3273–3281 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3273 .
[CrossRef] [PubMed]

2004 (1)

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett.386, 25–31 (2004).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

2000 (1)

F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Accounts of Chemical Research3, 773–780 (2000).
[CrossRef]

1997 (1)

J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
[CrossRef]

1995 (1)

S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995).
[CrossRef]

1989 (1)

Abe, S.

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

Abel, K. A.

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Adachi, S.

S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995).
[CrossRef]

Allan, G.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Bertram, A.

R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009).
[CrossRef] [PubMed]

Bhattacharya, P.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Birnboim, M.

Blasco, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Borri, P.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Brainis, E.

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Cademartiri, L.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Carrillo, S.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Casson, J. L.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Cauchi, S.

Clifford, J. P.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

Daldosso, N.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

De Geyter, B.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010).
[CrossRef]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
[CrossRef]

De Mello, J. C.

J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Delerue, C.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

Donega, C.D.

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Em- plit, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Fedeli, J. M.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Flamee, S.

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

Foell, C.

J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.

Foell, C. A.

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

Friend, R. H.

J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
[CrossRef]

Galan, J. V.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Gao, Y.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Garcia- Ruperez, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Garrido, B.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Gautier, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Geiregat, P.

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Goncharenko, A. V.

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett.386, 25–31 (2004).
[CrossRef]

Gourbil-leau, F.

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

Guider, R.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Haijun, Q.

J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.

Hassinen, A.

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Hens, Z.

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012).
[CrossRef]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010).
[CrossRef]

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
[CrossRef]

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Heo, J.

Hernandez, S.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Hollingsworth, J. A.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Hoog- land, S.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

Hoogland, S.

Houtepen, A. J.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Howard, I.

Hughes, S.

Jiang, Z.

Johnston, K. W.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

Jordana, E.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Justo, Y.

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Klimov, V. I.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Kockaert, P.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Komorowska, K.

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Konstantatos, G.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

Kovalenko, M. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Lambert, K.

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

Langbein, W.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Lebour, Y.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Lee, J.-S.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

Levina, L.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14, 3273–3281 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3273 .
[CrossRef] [PubMed]

Marti, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Masia, F.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Moreels, I.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012).
[CrossRef]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
[CrossRef]

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

Navarro-Urrios, D.

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

Neeves, A.

Ninomiya, S.

S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995).
[CrossRef]

Omari, A.

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Ozin, G. A.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Pavesi, L.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

Pichaandi, J.

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

Pietryga, J. M.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Pitanti, A.

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

Qiao, H.

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Quintero-Torres, R.

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

Rizk, R.

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

Sanchis, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Sargent, E. H.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14, 3273–3281 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3273 .
[CrossRef] [PubMed]

Schaller, R. D.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Schelew, E.

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.

Schins, J. M.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Shan, J.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Shevchenko, E. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

Siebbeles, L. D. A.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Signorell, R.

R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009).
[CrossRef] [PubMed]

Sukhovatkin, V.

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Talapin, D. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

ten Cate, S.

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

Van Dale, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

Van Hoecke, K.

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Van Thourhout, D.

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009).
[CrossRef]

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Vanhaecke, F.

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Wang, T.-S.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

Werder, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Wiersma, D. S.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Williams, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Wirtz, L.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

Wise, F. W.

F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Accounts of Chemical Research3, 773–780 (2000).
[CrossRef]

Wittmann, H. F.

J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
[CrossRef]

Xu, J.

Young, J. F.

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 .
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.

Accounts of Chemical Research (1)

F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Accounts of Chemical Research3, 773–780 (2000).
[CrossRef]

ACS Nano (2)

B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012).
[CrossRef] [PubMed]

P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013).
[CrossRef] [PubMed]

Adv. Mat. (1)

J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012).
[CrossRef]

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010).
[CrossRef]

B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012).
[CrossRef]

Chem. Phys. Lett. (1)

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett.386, 25–31 (2004).
[CrossRef]

Chemical Reviews (1)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006).
[CrossRef] [PubMed]

Journal of Materials Chemistry (1)

Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012).
[CrossRef]

Journal of Physical Chemistry C (1)

Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.

Journal of the American Chemical Society (1)

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008).
[CrossRef] [PubMed]

Langmuir (1)

K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008).
[CrossRef] [PubMed]

Nano Letters (2)

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009).
[CrossRef] [PubMed]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010).
[CrossRef] [PubMed]

Nature Nanotechnology (1)

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (2)

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010).
[CrossRef]

A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012).
[CrossRef]

Physical chemistry chemical physics : PCCP (1)

R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009).
[CrossRef] [PubMed]

Other (3)

N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.

See the Appendix section for a thorough discussion of the synthesis, dielectric function, coupled dipole model, experimental and simulated results.

J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Absorption spectrum of the PbS/CdS QD used here, as recorded on a dilute QD dispersion in tetrachloroethylene. (b) Optical microscopy image of a sample with planarized waveguides coated by a QD monolayer with various strip lengths and a cartoon representation of the opitcal field coupled from the fiber through the grating in the QD coated PWG. (c) Scanning electron microscopy image of a (topview) PWG coated by a QD monolayer. The resolution is such that the individual QDs coating the waveguide can be discerned. (d) Atomic force microscopy image and cross section of a PWG coated by a QD monolayer, clearly showing the offset (l) between the top surface of the (slightly submerged) PWG and its silica cladding.

Fig. 2
Fig. 2

(a) (open squares) Absorbance A – as defined by Eq. (1) – at 1520nm as a function of the strip length difference ΔL for PWG coated with a PbS/CdS QD 2-layer strip 500, 1000, and 1500μm long using the power transmitted through a similar waveguide with a 200μm QD 2-layer as a reference and (full line) best fit of the data to a line passing through the origin with an indication of the thus obtained absorption coefficient αQD. (b) (red, left and bottom axis) αQD thus determined as a function of wavelength for a (filled circles) QD monolayer and a (open squares) QD 2-layer coated PWG. The full lines represent the absorption spectrum of dispersed PbS/CdS QDs normalized to match the respectively measured absorption coefficients. (blue, right and top axis) αQD per QD layer at 1520 nm. The full line is a guide to the eye and the dashed line indicates the average value obtained for a monolayer and a 2-layer.

Fig. 3
Fig. 3

(a) Cartoon representation of the replacement of the real QD film on top of an SOI planarized waveguide by an effective medium. Indicated are the height difference l between the top surface of the PWG and its silica cladding and the native silica layer in between the PWG top surface and the effective medium representing the QD film. (b) Cross-sectional representation of the simulated electric field for 1520 nm light guided by a PWG coated by a QD monolayer. (c) Comparison of the experimental and simulated αQD absorbance spectrum of a QD coated PWG for two different combinations of l and εh.

Fig. 4
Fig. 4

(a) Comparison of the experimental and simulated αQD spectrum of a PWG coated with (blue) a QD monolayer and (red) a QD seven layer. The respective axis are scaled by a factor of 7 to allow for a direct comparison of the absorbance per number of layers. (b) Evolution of εh values needed to match experimental and simulated absorption coefficient calculated for the extreme case of (red) l = 6 and (blue) l = 10nm.

Fig. 5
Fig. 5

The QD core shell exciton absorption (red line) shows a blueshift, after cationic exchange procedure, compared with the QD core exciton absorption (blue line).

Fig. 6
Fig. 6

Experimental αQD, measured as a function of wavelength for a QD monolayer to a QD 7-layer coated PWG. The full lines represent the absorption spectrum of dispersed PbS/CdS QDs normalized to match the respectively measured absorption coefficients.

Fig. 7
Fig. 7

(a) The dielectric function of the core (PbS) of PbS/CdS Qdots determined using the IMI method for the KK-analysis. Dotted and full line represent respectively εc,R and εc,I. (b) The real part of the complex effective refractive index ñeff (dotted line) and the extinction coefficient (full line) extracted from applying the coupled dipole model to the PbS/CdS QD layer.

Fig. 8
Fig. 8

(a) Monolayer of PbS nanocrystals deposited on TEM grid. Inset : The Fourier image of the monolayer yields a hexagonal diffraction pattern clearly illustrating the strong hexagonal order within the monolayer. (b) The absorbance Ai per layer of i-layers of PbS and PbS/CdS QDs normalized relative to the absorbance of a monolayer as a function of the number of layers i.

Fig. 9
Fig. 9

The full lines represent the absorption spectrum of the simulated αQD spectrum with the needed εh values for l = 6nm to match the experimental and simulated absorption coefficient. Similar curves where obtained for l = 10nm.

Fig. 10
Fig. 10

Photoluminescence spectrum of the PbS/CdS QDs used in this work after excitation at 750 nm. The QDs are dispersed in tetrachloroethylene. The emission peak is at 1520 nm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A = ln P t P t , ref = ( α α 0 ) ( L L ref )
α Q D , t h = 4 π κ eff λ
ε eff = ε h ε 0 ( 1 + N s L t a Q D 1 a Q D S )
μ i , exp = ln 10 × A susp f susp L cuv
μ i , t h = 2 π λ n s Im ( 3 ε s ε s h [ ε c ( 3 2 q ) + 2 ε s h q ] ε s [ ε c q + ε s h ( 3 q ) ] ε s h [ ε c ( 3 2 q ) + 2 ε s h q ] + 2 ε s [ ε c q + ε s h ( 3 q ) ] )
D = ε eff E = ε 0 E + P = ε 0 E + ε 0 ( ε h 1 ) E + N p 0
N p 0 = N ε 0 a 0 E L
a 0 = ε h V ( ε s h ε h ) [ ε s h + ( ε c ε s h ) 1 3 ( 1 p ) ] + p ε s h ( ε c ε s h ) [ ε s h + ( ε c ε s h ) 1 3 ( 1 p ) ] [ ε h + 1 3 ( ε s h ε h ) ] + p 1 3 ε s h ( ε c ε s h )
E L , i = E + j i β i , j E L , j
E L = E + S ε 0 a 0 ε h E L
S | | = 1 4 π j i ( 1 i k d i j ) ( 3 cos 2 ( θ i j 1 ) ) e i k d i j d i j 3 + k 2 sin 2 ( θ i j ) e i k d i j d i j
L t = 0.82 ( d + 2 l lig ) × i 8 × i nm
ε eff = ε h ε 0 ( 1 + N s L t a Q D 1 a Q D S )

Metrics