Abstract

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 µm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 µm. This simple and robust source of light covers a portion of the atmospheric transmission window.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
    [CrossRef]
  2. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009).
    [CrossRef] [PubMed]
  3. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
    [CrossRef] [PubMed]
  4. M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers (Marcel Dekker, New York, NY, USA, 1993).
  5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).
  6. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006).
    [CrossRef] [PubMed]
  7. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
    [CrossRef]
  8. L. Rimai, E. W. Kaiser, E. Schwab, and E. C. Lim, “Application of time-resolved infrared spectral photography to chemical kinetics,” Appl. Opt.31(3), 350–357 (1992).
    [CrossRef] [PubMed]
  9. G. Sepp and R. Protz, “Laser beam source for a directional infrared countermeasures (DIRCM) weapon system,” US 6587486 B1 (2003).
  10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
    [CrossRef] [PubMed]
  11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31(17), 2553–2555 (2006).
    [CrossRef] [PubMed]
  12. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
    [CrossRef]
  13. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011).
    [CrossRef]
  14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  15. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  16. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
    [CrossRef]
  17. D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986).
    [CrossRef]
  18. P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).
  19. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005).
    [CrossRef]
  20. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
    [CrossRef] [PubMed]
  21. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007).
    [CrossRef] [PubMed]
  22. F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
    [CrossRef]
  23. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
    [CrossRef]
  24. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012).
    [CrossRef] [PubMed]
  25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
    [CrossRef]
  26. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012).
    [CrossRef]
  27. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21(8), 9573–9583 (2013).
    [CrossRef] [PubMed]
  28. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
    [CrossRef]
  29. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
    [CrossRef]
  30. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
    [CrossRef]
  31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
    [CrossRef]
  32. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
    [CrossRef]
  33. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
    [CrossRef] [PubMed]
  34. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
    [CrossRef] [PubMed]
  35. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  36. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  37. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
    [CrossRef]
  38. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
    [CrossRef] [PubMed]
  39. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
    [CrossRef] [PubMed]
  40. A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
    [CrossRef]
  41. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
    [CrossRef]
  42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
    [CrossRef]
  43. R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
    [CrossRef]
  44. R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003).
    [CrossRef]
  45. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
    [CrossRef]
  46. E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
    [CrossRef]
  47. S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
    [CrossRef]
  48. S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
    [CrossRef]
  49. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
    [CrossRef] [PubMed]
  50. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
    [CrossRef] [PubMed]
  51. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
    [CrossRef] [PubMed]
  52. J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
    [CrossRef] [PubMed]
  53. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
    [CrossRef]
  54. T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
    [CrossRef]
  55. F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
    [CrossRef]
  56. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett.17(21), 1515–1517 (1992).
    [CrossRef] [PubMed]
  57. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).
  58. R. Hui and M. S. O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009), xvii, 652 p.

2013

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21(8), 9573–9583 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

2012

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012).
[CrossRef] [PubMed]

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012).
[CrossRef]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

2011

2010

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

2009

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

2008

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

2007

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

2006

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31(17), 2553–2555 (2006).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

2005

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005).
[CrossRef]

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
[CrossRef]

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

2004

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

2003

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003).
[CrossRef]

2002

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

2000

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

1999

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

1997

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

1992

1986

D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986).
[CrossRef]

1985

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

1978

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Achiba, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

Agger, C.

Alam, S. U.

Alexander, V. V.

Anashkina, E. A.

Andrianov, A. V.

Bachilo, S. M.

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003).
[CrossRef]

Bandow, S.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Bang, O.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Bhadra, S. K.

Bigot, L.

Boesewetter, D. E.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Bonaccorso, F.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Boussard-Plédel, C.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Bouwmans, G.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Brandon Shaw, L.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

Brida, D.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

Bufetov, I. A.

Bureau, B.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Capes, L.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Cassabois, G.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Castellani, C. E. S.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

Cerullo, G.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Chan, A.

Chase, B.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Chaudhari, C.

Chen, K. K.

Cheng, M.-Y.

Cheng, T.

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

Codemard, C.

Collier, J.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Colombo, L.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

Coq, D. L.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Cordeiro, C. M. B.

Cronin-Golomb, M.

Cumberland, B. A.

Delalande, C.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Deng, D.

Di Marco, G.

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

Dianov, E. M.

Domachuk, P.

Dresselhaus, G.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Dresselhaus, M. S.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Duan, Z.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Duesberg, G. S.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Dupont, S.

Dvoyrin, V. V.

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Eklund, P. C.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

El Amraoui, M.

Fang, S.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Fantini, C.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

Ferrari, A.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Ferrari, A. C.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Flahaut, E.

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
[CrossRef]

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Freeman, M. J.

Galeener, F. L.

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Galvanauskas, A.

Gao, W.

Geils, R. H.

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

George, A. K.

Ghosh, D.

Gogotsi, Y.

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
[CrossRef]

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

Going, R.

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Gucciardi, P. G.

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

Guryanov, A. N.

Gur'yanov, A. N.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Hasan, T.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

Hayes, J. R.

Hegde, R. S.

Hennrich, F.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Islam, M. N.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Jorio, A.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

Jost, O.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Juncker, C.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Kaiser, E. W.

Kamynin, V. A.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Kataura, H.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Kawashima, H.

Keiding, S. R.

Kelleher, E.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Kelleher, E. J. R.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Khopin, V. F.

Kim, A. V.

Kim, Y. J.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Knight, J. C.

Koptev, M. Y.

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Kudlinski, A.

Kulkarni, O. P.

Kumar, M.

Kumazawa, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Kurkov, A. S.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

Laurent, C.

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
[CrossRef]

Lauret, J. S.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Le Rouge, A.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Liao, M.

Lim, E. C.

Lin, D.

Lombardo, A.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

Lucas, P.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Lyngsø, J. K.

Malinowski, A.

Mamyshev, P. V.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Maniwa, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Manzoni, C.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Mashinsky, V. M.

Maultzsch, J.

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Mazé, G.

Medvedkov, O. I.

Mélin, G.

Melkumov, M. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Menon, M.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Messaddeq, Y.

Meyer, J. C.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Michel, T.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Mikkelsen, J. J. C.

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Milana, S.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Milne, W. I.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Moréac, A.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Mosby, W. J.

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Muravyev, S. V.

Mussot, A.

Nair, R. R.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Neelakandan, M.

Neumann, A.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Neustruev, V. B.

Nicolosi, V.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Noske, D. U.

Novoselov, K. S.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Ohishi, Y.

Ohtsuka, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Omenetto, F. G.

O'Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

Osswald, S.

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
[CrossRef]

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

Paillet, M.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Pal, M.

Pandit, N.

Peigney, A.

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
[CrossRef]

Perera, G.

D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986).
[CrossRef]

Petersen, C.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Pimenta, M. A.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Polini, M.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

Popa, D.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

Popov, S. V.

Poulain, M.

Price, J. H. V.

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Qin, G.

Quiquempois, Y.

Rao, A. M.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Ravaine, D.

D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986).
[CrossRef]

Reich, S.

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

Richardson, D. J.

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Richter, E.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Riley, M. R.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Rimai, L.

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Roth, S.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Roussignol, P.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Rozhin, A. G.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

Rulkov, A. B.

Salgansky, M. Y.

Sanghera, J. S.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

Sauvajol, J.-L.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

Scardaci, V.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

Schwab, E.

Sciascia, C.

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Shubin, A. V.

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Smalley, R. E.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Solis, M. A.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Souza, M.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

Steffensen, H.

Stelmakh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Strano, M. S.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

Subbaswamy, K. R.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Sun, Z.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

Sun, Z. P.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

Suzuki, S.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Suzuki, T.

Tan, P.

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

Tan, P. H.

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Taylor, J. R.

Telg, H.

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

Terry, F. L.

Terry, J. F. L.

Thess, A.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Thøgersen, J.

Thomsen, C.

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

Thomsen, C. L.

Tomadin, A.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Torrisi, F.

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Travers, J.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Travers, J. C.

Umezu, I.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Vanvincq, O.

Vasiliev, S. A.

Voisin, C.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Wang, A.

Wang, F.

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

Weisman, R. B.

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003).
[CrossRef]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

White, I. H.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Williams, K. A.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Winful, H. G.

Wolchover, N. A.

Xia, C.

Xian, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

Yan, X.

Yashkov, M. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Ye, H.

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

Zhang, M.

ACS Nano

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Adv. Mater.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012).
[CrossRef]

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Carbon

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005).
[CrossRef]

Chem. Mater.

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006).
[CrossRef]

Chem. Phys. Lett.

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007).
[CrossRef]

J. Am. Ceram. Soc.

D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Chem. C

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007).
[CrossRef]

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010).
[CrossRef]

JETP Lett.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).

Laser Phys. Lett.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013).
[CrossRef]

Mater. Today

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012).
[CrossRef]

Nano Lett.

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003).
[CrossRef]

Nano Res.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Nat Commun

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Nat. Photonics

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Opt. Express

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012).
[CrossRef] [PubMed]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21(8), 9573–9583 (2013).
[CrossRef] [PubMed]

Opt. Lasers Eng.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013).
[CrossRef]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Phys. Rev. Lett.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004).
[CrossRef] [PubMed]

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004).
[CrossRef] [PubMed]

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005).
[CrossRef] [PubMed]

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003).
[CrossRef] [PubMed]

Physica E

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Quantum Electron.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Science

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997).
[CrossRef] [PubMed]

Sens. Actua. B.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).

Synth. Met.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999).
[CrossRef]

Other

R. Hui and M. S. O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009), xvii, 652 p.

M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers (Marcel Dekker, New York, NY, USA, 1993).

O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

G. Sepp and R. Protz, “Laser beam source for a directional infrared countermeasures (DIRCM) weapon system,” US 6587486 B1 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the mode-locked oscillator. TDFA: thulium-doped fiber amplifier, ISO: isolator, BPF: bandpass filter, OC: fiber output coupler, CNT SA: carbon nanotube saturable absorber, PC: polarization controller.

Fig. 2
Fig. 2

(a) Absorption spectrum of CNTs (black line), CNT-PVA composite (red line), and PVA (grey line). The operating wavelength is marked by the red dashed line. (b) Transmittance as a function of peak intensity. Raman spectra of CNT powders (black lines) and CNT-PVA composite (red lines) at different excitation wavelengths: (c) RBM region, (d) G region, (e) 2D region.

Fig. 3
Fig. 3

Seed laser performance. (a) Autocorrelation of the output pulses, with a deconvolved duration of 3.7 ps. (b) The corresponding optical spectrum (high resolution, inset).

Fig. 4
Fig. 4

Schematic of the Tm-fiber system for pulse amplification, compression and supercontinuum generation. WDM: wavelength division multiplexer. Mirror M1 is tilted to separate the outgoing beam from the incoming beam. Mirror M2 reflects the compressed pulses output without introducing any additional losses. M1, M2, and M3 are highly reflective broadband mirrors.

Fig. 5
Fig. 5

MOPFA results. (a) Autocorrelation of the amplified pulses with 81 ps duration. (b) Corresponding optical spectrum.

Fig. 6
Fig. 6

(a) Autocorrelation of the compressed pulse, with an 850 fs duration. (b) Corresponding optical spectrum.

Fig. 7
Fig. 7

Supercontinuum bandwidth (10 dB) as a function of GeO2 fiber length.

Fig. 8
Fig. 8

Output spectrum after 3.4 m of propagation in the GeO2 fiber.

Metrics