Abstract

A new strategy to obtain a single-mode fiber with a flattened intensity profile distribution is presented. It is based on the use of an OVD-made high index ring deposited on a silica rod having a refractive index slightly lower than the silica used for the microstructured cladding. Using this strategy, we realized the first single-mode fiber with a quasi-perfect top-hat intensity profile around 1 µm. Numerical studies clearly demonstrate the advantage of using a core index depression to insure the single-mode operation of the fiber at the working wavelength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
    [CrossRef]
  2. L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett.36(5), 734–736 (2011).
    [CrossRef] [PubMed]
  3. F. M. Dickey and S. C. Holswade, Laser Beam Shaping, Theory and Techniques (Marcel Dekker Inc, 2000).
  4. Y. Matsuura, M. Miyagi, A. German, L. Nagli, and A. Katzir, “Silver-halide fiber tip as a beam homogenizer for infrared hollow waveguides,” Opt. Lett.22(17), 1308–1310 (1997).
    [CrossRef] [PubMed]
  5. Y. Matsuura, D. Akiyama, and M. Miyagi, “Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt.42(18), 3505–3508 (2003).
    [CrossRef] [PubMed]
  6. J. R. Hayes, J. C. Flanagan, T. M. Monro, D. J. Richardson, P. Grunewald, and R. Allott, “Square core jacketed air-clad fiber,” Opt. Express14(22), 10345–10350 (2006).
    [CrossRef] [PubMed]
  7. A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
    [CrossRef]
  8. J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
    [CrossRef]
  9. X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
    [CrossRef]
  10. C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
    [CrossRef]
  11. C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
    [CrossRef]
  12. J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
    [CrossRef]
  13. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
    [CrossRef]
  14. J. W. Dawson, Z. M. Liao, I. Jovanovic, B. Wattellier, R. Beach, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for high output energy pulsed fiber lasers,” in Proceedings of CLEO 2003, paper CWD5, (2003).
  15. C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
    [CrossRef]
  16. P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
    [CrossRef]
  17. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  18. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express13(26), 10833–10839 (2005).
    [CrossRef] [PubMed]
  19. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  20. F. Hanawa, Y. Hibino, M. Shimizu, H. Suda, and M. Horiguchi, “Influences of the drawing conditions on optical characteristics in undoped-silica-core single-mode fibers,” Opt. Lett.12(8), 617–618 (1987).
    [CrossRef] [PubMed]
  21. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  22. D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
    [CrossRef]
  23. Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
    [CrossRef]
  24. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
    [CrossRef]
  25. W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
    [CrossRef]
  26. E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
    [CrossRef]
  27. A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
    [CrossRef] [PubMed]

2012 (3)

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

2011 (3)

2010 (3)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
[CrossRef]

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

2009 (3)

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

2008 (2)

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (1)

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

2003 (1)

1999 (1)

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
[CrossRef]

1997 (1)

1987 (1)

Agha, Y. O.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

Akiyama, D.

Allott, R.

Auguste, T.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Balcou, P.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Barty, C. P. J.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Beach, R.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Bigot, L.

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

Bigourd, D.

Binazon, L.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Bird, D. M.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Blin, S.

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

Boutu, W.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Bouwmans, G.

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

Boyko, O.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Boyland, A. J.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Broeng, J.

Calvet, P.

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

Carré, B.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Chartier, T.

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
[CrossRef]

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Constant, E.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
[CrossRef] [PubMed]

Dawson, J. W.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Deguil-Robin, N.

Descamps, D.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
[CrossRef] [PubMed]

Douay, M.

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett.36(5), 734–736 (2011).
[CrossRef] [PubMed]

Dubrouil, A.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
[CrossRef] [PubMed]

Elkin, N. N.

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

Fabre, B.

Fan, D.

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

Flanagan, J. C.

Geng, R.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

German, A.

Ghalmi, S.

Ghatak, A. K.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
[CrossRef]

Gobert, O.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Goyal, I. C.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
[CrossRef]

Grunewald, P.

Guenneau, S.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

Hanawa, F.

Hayes, J. R.

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Hibino, Y.

Horiguchi, M.

Hort, O.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

Hugonnot, E.

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett.36(5), 734–736 (2011).
[CrossRef] [PubMed]

Jakobsen, C.

Jeong, Y.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Jian, S.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

Jindal, R.

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
[CrossRef]

Jovanovic, I.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Kalita, M.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Katzir, A.

Koshiba, M.

Lago, L.

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett.36(5), 734–736 (2011).
[CrossRef] [PubMed]

Liao, Z. M.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Liem, A.

Limpert, J.

Liu, C.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

Lu, X.

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

Lu, Y.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

Mairesse, Y.

Manek-Hönninger, I.

Maran, J. N.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Matsuura, Y.

Merdji, H.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Mével, E.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
[CrossRef] [PubMed]

Miyagi, M.

Monro, T. M.

Mortensen, N. A.

Mussot, A.

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett.36(5), 734–736 (2011).
[CrossRef] [PubMed]

Nagli, L.

Napartovich, A. P.

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

Nguyen, D. M.

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

Nguyen, T. N.

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

Nicholson, J. W.

Nicolet, A.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
[CrossRef]

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Ning, T.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

Nolte, S.

Payne, D. N.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Payne, S. A.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Pearce, G. J.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Petersson, A.

Petit, S.

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

A. Dubrouil, Y. Mairesse, B. Fabre, D. Descamps, S. Petit, E. Mével, and E. Constant, “Controlling high harmonics generation by spatial shaping of high-energy femtosecond beam,” Opt. Lett.36(13), 2486–2488 (2011).
[CrossRef] [PubMed]

Qiu, J.

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

Quiquempois, Y.

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

Ramachandran, S.

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
[CrossRef]

J. R. Hayes, J. C. Flanagan, T. M. Monro, D. J. Richardson, P. Grunewald, and R. Allott, “Square core jacketed air-clad fiber,” Opt. Express14(22), 10345–10350 (2006).
[CrossRef] [PubMed]

Röser, F.

Russell, P. S. J.

Sahu, J. K.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Saitoh, K.

Salin, F.

Schreiber, T.

Shimizu, M.

Sola, I.

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Suda, H.

Thual, M.

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

Troshchieva, V. N.

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

Tsuchida, Y.

Tünnermann, A.

Valentin, C.

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Vysotsky, D. V.

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

Wang, C.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

Wattellier, B.

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

Webb, A. S.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Yablon, A. D.

Yoo, S.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Zellmer, H.

Zhang, F.

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

Zhou, Q.

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

Zhu, C.

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

Zolla, F.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

Appl. Opt. (1)

Int. J. Computation Math. Elec. Electron. Engineer. (1)

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibres,” Int. J. Computation Math. Elec. Electron. Engineer.27(1), 95–109 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, T. Ning, and S. Jian, “Single mode operations in the large flattened mode optical fiber lasers and amplifiers,” J. Opt. A, Pure Appl. Opt.11(6), 065402 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am.27(11), B63–B92 (2010).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

E. Constant, A. Dubrouil, O. Hort, S. Petit, D. Descamps, and E. Mével, “Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses,” J. Phys. At. Mol. Opt. Phys.45(7), 074018 (2012).
[CrossRef]

Laser Phys. (1)

N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Modelling of large flattened mode area fiber lasers,” Laser Phys.20(2), 304–310 (2010).
[CrossRef]

Opt. Commun. (2)

X. Lu, Q. Zhou, J. Qiu, C. Zhu, and D. Fan, “Design guidelines and characteristics of beam-shaping microstructure optical fibers,” Opt. Commun.259(2), 636–639 (2006).
[CrossRef]

C. Wang, F. Zhang, Y. Lu, C. Liu, R. Geng, and T. Ning, “Photonic crystal fiber with a flattened fundamental mode for the fiber lasers,” Opt. Commun.282(11), 2232–2235 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Merdji, C. Valentin, E. Constant, E. Mével, and B. Carré, “High-order-harmonic generation in gas with a flat-top laser beam,” Phys. Rev. A84(6), 063406 (2011).
[CrossRef]

Phys. Rev. B (1)

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005).
[CrossRef]

Proc. SPIE (6)

D. M. Nguyen, T. N. Nguyen, S. Blin, M. Thual, and T. Chartier, “Scalar product technique in modal decomposition for multimode fibers,” Proc. SPIE7717, 77170V, 77170V-10 (2010).
[CrossRef]

A. K. Ghatak, I. C. Goyal, and R. Jindal, “Design of waveguide refractive index profile to obtain flat modal field,” Proc. SPIE3666, 40–44 (1999).
[CrossRef]

J. W. Dawson, R. Beach, I. Jovanovic, B. Wattellier, Z. M. Liao, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for reduction of non-linear effects in optical fiber lasers,” Proc. SPIE5335, 132–139 (2004).
[CrossRef]

C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, L. Lago, P. Calvet, and E. Hugonnot, “Flattened fundamental mode in microstructured fibers: design, realization and characterization,” Proc. SPIE8426, 84260J, 84260J-5 (2012).
[CrossRef]

P. Calvet, C. Valentin, Y. Quiquempois, G. Bouwmans, L. Bigot, M. Douay, A. Mussot, and E. Hugonnot, “Top-hat beam output from a large mode area microstructured fiber for beam delivery,” Proc. SPIE8433, 84330K, 84330K-7 (2012).
[CrossRef]

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. N. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, “Fiber design for high-power fiber lasers,” Proc. SPIE7195, 71950I, 71950I-13 (2009).
[CrossRef]

Other (2)

J. W. Dawson, Z. M. Liao, I. Jovanovic, B. Wattellier, R. Beach, S. A. Payne, and C. P. J. Barty, “Large flattened mode optical fiber for high output energy pulsed fiber lasers,” in Proceedings of CLEO 2003, paper CWD5, (2003).

F. M. Dickey and S. C. Holswade, Laser Beam Shaping, Theory and Techniques (Marcel Dekker Inc, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Index profiles for step-index (a) and microstructured (b) fiber to obtain a flat top intensity profiles at the fiber output. nring, ncore and nclad/nFSM correspond to the refractive indices of the ring, the core and the cladding, respectively. For the microstructured fiber, we denote δncore and δnring the core and the ring index contrast with respect to the silica used in the cladding, respectively. ΔR is the ring thickness, Λ the pitch of the cladding and d the diameter of the air holes.

Fig. 2
Fig. 2

Schematic evolution (without considering material dispersion) of the fundamental mode effective index for the index profile of Fig. 1(a). The insets show typical intensity profiles at short (α) and long (γ) wavelengths compared to the cut-off wavelength of the fundamental ring mode (β).

Fig. 3
Fig. 3

(a) Scanning electron micrograph image of Fiber A. The dark regions correspond to the air holes while the high index ring is the brigth gray central ring. (b) Radial profile of germanium concentration of the high-index ring measured by EPMA.

Fig. 4
Fig. 4

Experimental transverse profiles of fundamental mode near field images at different wavelengths from 650 to 1650 nm (a) and from 950 to 1150 nm (b).

Fig. 5
Fig. 5

Results of the S2 measurements around 1.05 µm: (a) Sum of all Fourier transforms over all the pixels for Fiber B (blue line) and Fiber A. For Fiber A, centered injection has been tested (black line) together with an off-centered one (15 µm offset, red line). Fundamental and first higher order modes intensity distributions for Fiber B (b) and Fiber A (c) (top: image retrieved by S2 algorithm using experimental data, bottom: mode profiles obtained numerically (see section 4)).

Fig. 6
Fig. 6

(a) Cut-back measurements: experimental data (blue filled circles), linear fit (red dashed line). (b) Extra losses induced by bending the fiber at 1.05 µm.

Fig. 7
Fig. 7

(a) Effective indices for fundamental (blue diamonds) and first high order (red circles) modes. The magenta dashed line corresponds to the cladding refractive index denoted nFSM. (b) Confinement losses for the fundamental (blue diamonds) and HOM1 (red circles) modes. (c) Effective areas for fundamental (blue diamonds) and HOM1 (red circles) modes. (d) Transverse intensity profile for HOM1 computed for δncore = −7x10−4.

Metrics