Abstract

We report the distribution of time-bin entangled photon pairs over 300 km of optical fiber. We realized this by using a high-speed and high signal-to-noise ratio entanglement generation/evaluation setup that consists of periodically poled lithium niobate waveguides and superconducting single photon detectors. The observed two-photon interference fringes exhibited a visibility of 84%. We confirmed the violation of Bell’s inequality by 2.9 standard deviations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
    [CrossRef]
  2. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37(6), 1008–1010 (2012).
    [CrossRef] [PubMed]
  3. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
    [CrossRef]
  4. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
    [CrossRef] [PubMed]
  5. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
    [CrossRef] [PubMed]
  6. X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
    [CrossRef] [PubMed]
  7. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
    [CrossRef] [PubMed]
  8. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
    [CrossRef]
  9. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
    [CrossRef]
  10. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
    [CrossRef] [PubMed]
  11. W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
    [CrossRef]
  12. H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004).
    [CrossRef]
  13. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett.30(10), 1201–1203 (2005).
    [CrossRef] [PubMed]
  14. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
    [CrossRef] [PubMed]
  15. H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express14(8), 3453–3460 (2006).
    [CrossRef] [PubMed]
  16. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
    [CrossRef] [PubMed]
  17. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007).
    [CrossRef] [PubMed]
  18. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
    [CrossRef] [PubMed]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
    [CrossRef] [PubMed]
  20. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-mum band with periodically poled lithium niobate waveguide,” Opt. Express15(4), 1679–1683 (2007).
    [CrossRef] [PubMed]
  21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
    [CrossRef]
  22. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
    [CrossRef]
  23. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
    [CrossRef]
  24. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
    [CrossRef]
  25. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989).
    [CrossRef] [PubMed]
  26. S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
    [CrossRef]
  27. A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
    [CrossRef]
  28. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  29. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
    [CrossRef]
  30. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
    [CrossRef]
  31. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
    [CrossRef] [PubMed]
  32. B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
    [CrossRef]

2013 (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

2012 (3)

S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37(6), 1008–1010 (2012).
[CrossRef] [PubMed]

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

2009 (4)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
[CrossRef] [PubMed]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

2008 (1)

2007 (4)

2006 (1)

2005 (2)

2004 (3)

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004).
[CrossRef]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

1999 (2)

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

1998 (3)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

1996 (1)

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
[CrossRef] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

1982 (1)

A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

Aerts, S.

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

Anisimova, E.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Asobe, M.

Aspect, A.

A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
[CrossRef]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
[CrossRef] [PubMed]

Blauensteiner, B.

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

Briegel, H. J.

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

Cai, X. D.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Cao, Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Chen, J.

Chen, W.

Chen, Y. A.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Cirac, J. I.

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

Dalibard, J.

A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
[CrossRef]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

Diamanti, E.

Dur, W.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

Dür, W.

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

Dynes, J. F.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Ekert, A. K.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

Fedrizzi, A.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Fejer, M. M.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Guo, G. C.

Guo, J. F.

Han, Z. F.

Harada, K.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Herbst, T.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

Honjo, T.

Horne, M. A.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

Huang, Y. M.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Hübel, H.

Inoue, K.

Jennewein, T.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Jia, J. J.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Jiang, Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Kamada, H.

Kofler, J.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Kropatschek, S.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Kumar, P.

Kwiat, P.

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Langrock, C.

Larsson, J. Å.

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

Lederer, T.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

Li, H. W.

Li, X.

Liao, S. K.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Liu, C.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Lorünser, T.

Lu, H.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Ma, X. S.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Makarov, V.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Mech, A.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
[CrossRef] [PubMed]

Miquel, B.

B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
[CrossRef] [PubMed]

Naylor, W.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Nespoli, M.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

Nishida, Y.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Pan, G. S.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Pan, J. W.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

Peng, C. Z.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Popescu, S.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

Poppe, A.

Prevedel, R.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Ramelow, S.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Ratschbacher, L.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Ren, J. G.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Roger, G.

A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
[CrossRef]

Roussev, R. V.

Scarani, V.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

Scheidl, T.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Sharpe, A. W.

Sharping, J. E.

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Shields, A. J.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Tadanaga, O.

Takesue, H.

B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-mum band with periodically poled lithium niobate waveguide,” Opt. Express15(4), 1679–1683 (2007).
[CrossRef] [PubMed]

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express14(8), 3453–3460 (2006).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004).
[CrossRef]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

Tiefenbacher, F.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

Tittel, W.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

Ursin, R.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

Vanner, M. R.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Voss, P. L.

Wang, D.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Wang, J. Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Wang, S.

Weinfurter, H.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Wittmann, B.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

Wu, Y. P.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Xie, X.

Xu, P.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Yamamoto, Y.

Yin, H.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Yin, J.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Yin, Z. Q.

Yong, H. L.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Yuan, Z. L.

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

Zeilinger, A.

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

Zhang, Q.

Zhou, F.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

Zhou, Z.

Zoller, P.

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

Zukowski, M.

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Nat. Photonics (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013).
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

Nat. Phys. (1)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009).
[CrossRef]

Nature (2)

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488(7410), 185–188 (2012).
[CrossRef] [PubMed]

X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489(7415), 269–273 (2012).
[CrossRef] [PubMed]

New J. Phys. (2)

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300km quantum key distribution with entangled states,” New J. Phys.11(8), 085002 (2009).
[CrossRef]

B. Miquel and H. Takesue, “Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. A (3)

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A69(5), 050304 (2004).
[CrossRef]

W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A59(1), 169–181 (1999).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004).
[CrossRef]

Phys. Rev. Lett. (12)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93(18), 180502 (2004).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993).
[CrossRef] [PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons That Never Interacted,” Phys. Rev. Lett.80(18), 3891–3894 (1998).
[CrossRef]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett.76(5), 722–725 (1996).
[CrossRef] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989).
[CrossRef] [PubMed]

S. Aerts, P. Kwiat, J. Å. Larsson, and M. Zukowski, “Two-Photon Franson-Type Experiments and Local Realism,” Phys. Rev. Lett.83(15), 2872–2875 (1999).
[CrossRef]

A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell's Inequalities Using Time- Varying Analyzers,” Phys. Rev. Lett.49(25), 1804–1807 (1982).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68(5), 557–559 (1992).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23(15), 880–884 (1969).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett.81(17), 3563–3566 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for distribution of time-bin entangled photon pairs over 300 km of optical fiber. EDFA: Erbium doped fiber amplifier, FBG filter: fiber Bragg grating to suppress amplified spontaneous emission from the EDFA, PC: polarization controller, PPLN: periodically poled lithium niobate waveguide, PLC MZI: Mach–Zehnder interferometer fabricated based on a planar lightwave circuit.

Fig. 2
Fig. 2

Signal-to-noise ratio of experimental setup. The signal-to-noise ratio RSN of our entanglement generation/evaluation system was obtained from the coincidence and accidental count rates. The error bars were calculated by using the square root of the coincidence and accident counts.

Fig. 3
Fig. 3

Two-photon interference fringes obtained after 300-km distribution over fiber. Black circles and red squares: experimental data when the temperature of MZI-1 was set at 15.35 and 15.54 °C, respectively. Statistical error bars are shown. The fitted curves were obtained without any statistical weighting of the experimental data.

Fig. 4
Fig. 4

Fluctuations of temporal positions of coincidence peaks in TIA histograms. The temporal positions of the coincidence peaks were shifted during the measurement because of the fluctuations in fiber length caused by the unstable room temperature. The coincidence counts were collected within a 300 ps time window by tracing the coincidence peaks over a period of one hour.

Tables (1)

Tables Icon

Table 1 Coincidence counts for each phase setup

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

|ψ= 1 N k=1 N |k s |k i ,
|ψ k=1 n |k s |k i + k=n+1 N ( 1+ e i( θ s + θ i ) ) |k s |k i + k=N+1 N+n e i( θ s + θ i ) |k s |k i ,
S=E( d s , d i )+E( d s , d i )+E( d s , d i )E( d s , d i ).
E( θ s , θ i ):= R( θ s , θ i )R( θ s , θ i +π)R( θ s +π, θ i )+R( θ s +π, θ i +π) R( θ s , θ i )+R( θ s , θ i +π)+R( θ s +π, θ i )+R( θ s +π, θ i +π) .
R SN = R c R acc = μ α s α i +(μ α s + d s )(μ α i + d i ) (μ α s + d s )(μ α i + d i ) ,

Metrics