Abstract

We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  2. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001).
    [CrossRef] [PubMed]
  3. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010).
    [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
    [CrossRef]
  7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
    [CrossRef] [PubMed]
  8. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev.7(5), 628–645 (2013).
  9. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
    [CrossRef] [PubMed]
  10. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B29(11), 3183–3191 (2012).
    [CrossRef]
  11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12(1), 124–135 (2004).
    [CrossRef] [PubMed]
  12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17(12), 9858–9872 (2009).
    [CrossRef] [PubMed]
  13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett.35(14), 2361–2363 (2010).
    [CrossRef] [PubMed]
  14. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett.11(7), 464–466 (1986).
    [CrossRef] [PubMed]
  15. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995).
    [CrossRef] [PubMed]
  16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett.37(13), 2769–2771 (2012).
    [CrossRef] [PubMed]
  17. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express12(9), 1932–1937 (2004).
    [CrossRef] [PubMed]
  18. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B23(6), 1221 (2006).
    [CrossRef]
  19. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  20. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63 (2010).
    [CrossRef]
  21. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express20(9), 9471–9475 (2012).
    [CrossRef] [PubMed]
  22. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B22(3), 687 (2005).
    [CrossRef]
  23. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
    [CrossRef] [PubMed]
  24. B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express19(24), 24354–24360 (2011).
    [CrossRef] [PubMed]
  25. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750 (2006).
    [CrossRef]
  26. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett.33(1), 28–30 (2008).
    [CrossRef] [PubMed]

2013

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev.7(5), 628–645 (2013).

2012

2011

B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express19(24), 24354–24360 (2011).
[CrossRef] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

2010

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010).
[CrossRef]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett.35(14), 2361–2363 (2010).
[CrossRef] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63 (2010).
[CrossRef]

2009

2008

2007

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

2006

2005

2004

2003

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2001

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001).
[CrossRef] [PubMed]

2000

1995

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

1986

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Alonzo, J.

Bayri, A.

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Bise, R.

Boppart, S. A.

Chai, L.

Chang, G.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Chen, H. H.

Chen, L.-J.

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Cristiani, I.

Cruz, J. M. D.

Dantus, M.

Degiorgio, V.

Dimarcello, F.

Dudley, J. M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Dülgergil, E.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Erkintalo, M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

Feder, K.

Fini, J. M.

Genty, G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Giessen, H.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

Grüner-Nielsen, L.

Gunn, J. M.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001).
[CrossRef] [PubMed]

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Hu, M.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001).
[CrossRef] [PubMed]

Ilbey, E.

Ilday, F. Ö.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Kärtner, F. X.

Keller, U.

Knox, W. H.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Lægsgaard, J.

Lee, Y. C.

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Liu, X.

Liu, Y.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Lozovoy, V. V.

Lu, F.

Menyuk, C. R.

Metzger, B.

Møller, U.

Monberg, E.

Murdoch, S. G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Nicholson, J. W.

Nilsson, J.

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Paschotta, R.

Pavlov, I.

Ranka, J. K.

Richardson, D. J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Schenkel, B.

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

Steinmann, A.

Stentz, A. J.

Stockert, T.

Tartara, L.

Tediosi, R.

Travers, J. C.

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010).
[CrossRef]

Trevor, D. J.

Tu, H.

Turchinovich, D.

Wai, P. K. A.

Wang, C. Y.

Westbrook, P. S.

Windeler, R. S.

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

Xu, B.

Xu, Y. Q.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

Zheltikov, A.

J. Opt.

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photonics Rev.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev.7(5), 628–645 (2013).

Nat. Photonics

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007).
[CrossRef]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012).
[CrossRef] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Science

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated spectral (a, c) and temporal (b, d) evolution of a transform-limited 80-fs (FWHM) Gaussian pulse along a 9-cm NL-3.3-890-02 fiber with 9-nJ input pulse energy (a, b), and a 9-cm LMA-8 fiber with 23.4-nJ input pulse energy (c, d). The dashed lines in the spectral domain separate the normal (short wavelengths) and anomalous (long wavelengths) dispersion regimes, while the insets in the temporal domain are magnified images showing RDW generation at maximum input pulse compression.

Fig. 2
Fig. 2

Portable RDW fiber source consisting of a rack-mounted laser box, a delivery fiber, and a fiber-pumping apparatus on an optical breadboard.

Fig. 3
Fig. 3

Properties of RDW from a 9-cm LMA-8 fiber. (a) Temporal profiles of pump pulse (brown, top panel), approximated 80-fs Gaussian pulse (green, top panel), uncompressed (blue, bottom panel) and compressed (red, bottom panel) 1.7-nJ RDW pulse; (b) Spectra of pump pulse centered at 1550 nm (brown, top panel), approximated 80-fs Gaussian pulse (green, top panel), 1.7-nJ RDW pulse centered at 620 nm (red, bottom panel), and threshold RDW pulse centered at 679 nm (black, bottom panel); (c) Observed (black) and GNLSE-modeled (green) relations of RDW pulse energy vs. input pulse energy; (d) Observed (black) and GNLSE-modeled (green) RDW spectra at several RDW pulse energies; (e) Second harmonic generation (SHG) signal spectra of uncompressed (blue) and compressed (red) 1.7-nJ RDW pulses. Inset: MIIPS trace of compressed 1.7-nJ RDW pulse.

Fig. 4
Fig. 4

RDW spectra at threshold input pulse energies (broken curves) and higher input pulse energies (solid curves) from a series of 9-cm fibers, along with RDW pulse energies at the higher input pulse energies.

Tables (2)

Tables Icon

Table 1 Representative platforms for broadband fiber nonlinear wavelength conversion.

Tables Icon

Table 2 Observed bright RDW with Gaussian-like spectra from commercial PCFs (NKT Photonics A/S) and standard fiber (SMF-28) pumped by approximated 1550-nm 80-fs (FWHM) unchirped Gaussian pulses.

Metrics