Abstract

Strongly anisotropic particles with hyperbolic dispersion that are small compared with the wavelength show strong resonance in the near infrared. The unique resonance modes are insensitive to the host refractive index and independent of particle size. In addition, the far-field direction of scattering does not depend on incident angle. Because the strength of resonance is comparable to a plasmonic nanoparticle in the visible region, a hyperbolic-dispersed particle is a promising scatterer as well as local heater in the near infrared.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media, 2007).
  3. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
    [CrossRef] [PubMed]
  4. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
    [CrossRef]
  5. D. Li, L. Qin, X. Xiong, R.-W. Peng, Q. Hu, G.-B. Ma, H.-S. Zhou, and M. Wang, “Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates,” Opt. Express19(23), 22942–22949 (2011).
    [CrossRef] [PubMed]
  6. W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y.-W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express21(1), 618–625 (2013).
    [CrossRef] [PubMed]
  7. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  8. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
    [CrossRef]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  11. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett.34(7), 890–892 (2009).
    [CrossRef] [PubMed]
  12. S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
    [CrossRef]
  13. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
    [CrossRef]
  14. Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
    [CrossRef]
  15. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
    [CrossRef]
  16. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
    [CrossRef] [PubMed]
  17. S. M. Rytov, “Electromagnetic Propeties of a Finely Stratified Medium,” Sov. Phys. JETP2, 466–475 (1956).
  18. X. Ni, Z. Liu, and A. V. Kildishev, Photonics DB: Optical Constants (DOI: 10.4231/D3FT8DJ4J) (2008).
  19. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  20. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
    [CrossRef]
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  22. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2: 492(2012).
  23. A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.
  24. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
    [CrossRef]
  25. P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
    [CrossRef] [PubMed]
  26. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
    [CrossRef] [PubMed]

2013 (3)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y.-W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express21(1), 618–625 (2013).
[CrossRef] [PubMed]

2012 (3)

S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
[CrossRef]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

2011 (4)

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
[CrossRef] [PubMed]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

D. Li, L. Qin, X. Xiong, R.-W. Peng, Q. Hu, G.-B. Ma, H.-S. Zhou, and M. Wang, “Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates,” Opt. Express19(23), 22942–22949 (2011).
[CrossRef] [PubMed]

2010 (1)

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

2009 (1)

2008 (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

2007 (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

2001 (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

1972 (1)

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic Propeties of a Finely Stratified Medium,” Sov. Phys. JETP2, 466–475 (1956).

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Alekseyev, L. V.

Barnakov, Y. A.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

Bartal, G.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Ben-Abdallah, P.

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
[CrossRef] [PubMed]

Biehs, S.-A.

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
[CrossRef] [PubMed]

Black, P.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

Boltasseva, A.

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Bonner, C. E.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

Carminati, R.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

Chang, C. M.

Chen, W. T.

Christy, R.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Drachev, V. P.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Greffet, J.-J.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

Halas, N. J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

Hu, Q.

Huang, D.-W.

Huang, Y.-W.

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Ishii, S.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
[CrossRef]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joulain, K.

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
[CrossRef] [PubMed]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

Kildishev, A. V.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
[CrossRef]

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Knight, M. W.

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Li, D.

Liao, C. Y.

Liu, A. Q.

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Lu, C. H.

Ma, G.-B.

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

Naik, G.

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Narimanov, E.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Noginov, M. A.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

Nordlander, P.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Peng, R.-W.

Podolskiy, V. A.

Qin, L.

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic Propeties of a Finely Stratified Medium,” Sov. Phys. JETP2, 466–475 (1956).

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

Shalaev, V.

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Shalaev, V. M.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Sun, S.

Thongrattanasiri, S.

Tsai, D. P.

Tseng, M. L.

Tumkur, T.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Wang, M.

Wu, P. C.

Xiong, X.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhou, H.-S.

Zhou, L.

Zhu, G.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

ACS Nano (1)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Appl. Phys. B (1)

Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011).
[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001).
[CrossRef]

Laser Photonics Rev. (1)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013).
[CrossRef]

Nat. Photonics (1)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008).
[CrossRef]

Opt. Commun. (1)

S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006).
[CrossRef]

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Science (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic Propeties of a Finely Stratified Medium,” Sov. Phys. JETP2, 466–475 (1956).

Other (5)

X. Ni, Z. Liu, and A. V. Kildishev, Photonics DB: Optical Constants (DOI: 10.4231/D3FT8DJ4J) (2008).

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2: 492(2012).

A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Effective permittivity of silver-silicon multilayer where the optical axis is parallel to the z-axis. (b) Scattering efficiency (Qscat) and absorption efficiency (Qabs) of the HMM sphere. The white arrow in the sphere of the inset indicates the optical axis, which is parallel to the z-axis. (c) The magnetic and electric field amplitudes of the HMM sphere at 1564 nm in the x-z plane and the y-z plane. (d) Scattering and absorption efficiencies of the silver sphere in x-z plane and y-z plane. (e) The magnetic and electric field amplitudes of the silver sphere at 360 nm. The white dashed lines on (c) and (e) indicate the sizes of the HMM and Ag spheres, respectively.

Fig. 2
Fig. 2

(a) Normalized absorption efficiencies of the HMM sphere in different hosts. (b) Normalized absorption efficiencies of the HMM sphere having different radii. Each plot in (a) and (b) is normalized to its peak value.

Fig. 3
Fig. 3

(a) Definition of θ and ϕ. The optical axis indicated by the white arrow for each HMM sphere is parallel to the z-axis. (b) Incident angle dependences (θ and ϕ) of the normalized absorption efficiencies for the HMM sphere at 1564 nm. (c)–(j) Polar plots of the electric far-field amplitudes for θ and ϕ dependencies for the HMM sphere at 1564 nm ((c)–(f)) and for the silver sphere at 360 nm ((g)–(j)). In (h) and (i), all four curves overlap.

Fig. 4
Fig. 4

(a) Scattering and absorption efficiencies of the silver-silicon multilayer cubic particle as well as the homogenous HMM cubic particle. The multilayer cubic as well as the homogenous cubic are indicated as layers and EMT, respectively. The inset shows the schematic of the multilayer cubic. (b) Magnetic field amplitude of the multilayer cubic at 1690 nm in the x-z plane and the y-z plane.

Metrics