Abstract

Based on the heterodyne beating between the pre-chirped optical pulse and the continuous wave (CW) light in a wideband photodetector (PD), linearly chirped microwave pulse with time duration of 3.2ns and bandwidth of 33GHz, which yields a large time-bandwidth product (TBWP) of 106 and high compression ratio of 160, is generated in our experiment. Dispersion compensation fiber (DCF) with uniform response across broad bandwidth is used for providing the original linear chirp in our method, which shows the promise to generate linearly chirped microwave pulse with bandwidth of up to THz. The flexibility of the center frequency and the stability of the time-frequency performance are demonstrated by generating different types of linearly chirped microwave pulses. The range resolution of our generated microwave pulse is also verified by off-line processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
    [CrossRef]
  2. O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
    [CrossRef]
  3. M. Miyakawa and T. Hayashi, “Non-invasive thermometry using a chirp pulse microwave—-Tomographic measurement of temperature change in saline solution phantom of the human body,” in Proceedings of the 24th European Microwave Conference, 613–618 (1994).
  4. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
    [CrossRef] [PubMed]
  5. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
    [CrossRef] [PubMed]
  6. A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).
  7. H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).
  8. Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
    [CrossRef]
  9. Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett.32(24), 3486–3488 (2007).
    [CrossRef] [PubMed]
  10. H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007).
    [CrossRef]
  11. H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008).
    [CrossRef]
  12. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
    [CrossRef]
  13. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
    [CrossRef]
  14. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett.38(8), 1361–1363 (2013).
    [CrossRef] [PubMed]
  15. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
    [CrossRef]
  16. I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
    [CrossRef]
  17. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002).
    [CrossRef] [PubMed]
  18. S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
    [CrossRef]
  19. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
    [CrossRef]
  20. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
    [CrossRef]
  21. C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
    [CrossRef]
  22. C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
    [CrossRef]
  23. C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
    [CrossRef]
  24. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
    [CrossRef]
  25. R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
    [CrossRef]
  26. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express21(9), 11475–11481 (2013).
    [CrossRef] [PubMed]
  27. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999).
    [CrossRef] [PubMed]
  28. J. H. Jacobi and L. E. Larsen, “Linear FM pulse compression radar techniques applied to biological imaging,” in Medical Applications of Microwave Imaging (IEEE, 1986).

2013 (3)

2012 (1)

2011 (2)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

2010 (2)

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

2009 (2)

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

2008 (4)

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008).
[CrossRef]

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

2007 (2)

Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett.32(24), 3486–3488 (2007).
[CrossRef] [PubMed]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007).
[CrossRef]

2005 (2)

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

2004 (1)

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

2002 (1)

2000 (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

1999 (1)

1992 (1)

H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).

Ashrafi, R.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
[CrossRef]

Azaña, J.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
[CrossRef]

M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999).
[CrossRef] [PubMed]

Bertero, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

Boccacci, P.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

Bogoni, A.

Boric-Lubecke, O.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
[CrossRef]

Bradford, W. J.

H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).

Brown, G. G.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Carballar, A.

Chen, J.

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008).
[CrossRef]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Conte, F.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

Dai, Y.

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett.32(24), 3486–3488 (2007).
[CrossRef] [PubMed]

Dian, B. C.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Douglass, K. O.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Furutani, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

Geyer, S. M.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Ghelfi, P.

Girão, P.

O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
[CrossRef]

Goh, C. S.

Griffiths, H. D.

H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Hayashi, T.

M. Miyakawa and T. Hayashi, “Non-invasive thermometry using a chirp pulse microwave—-Tomographic measurement of temperature change in saline solution phantom of the human body,” in Proceedings of the 24th European Microwave Conference, 613–618 (1994).

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Jiang, H. Y.

Laghezza, F.

Leaird, D. E.

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

Li, C.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
[CrossRef]

Li, M.

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Lin, I.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Lin, J.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
[CrossRef]

Lubecke, V. M.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
[CrossRef]

Luo, B.

Madeira, R.

O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
[CrossRef]

McKinney, J. D.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002).
[CrossRef] [PubMed]

Miyakawa, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

M. Miyakawa and T. Hayashi, “Non-invasive thermometry using a chirp pulse microwave—-Tomographic measurement of temperature change in saline solution phantom of the human body,” in Proceedings of the 24th European Microwave Conference, 613–618 (1994).

Muriel, M. A.

Orikasa, K.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

Pan, W.

Park, Y.

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
[CrossRef]

Pate, B. H.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Postolache, G.

O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
[CrossRef]

Postolache, O.

O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
[CrossRef]

Scotti, F.

Set, S. Y.

Shi, J. W.

Shipman, S. T.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

Wang, C.

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

Wei, C. C.

Weiner, A. M.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002).
[CrossRef] [PubMed]

Wun, J. M.

Xiao, S.

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

Yan, L. S.

Yao, J.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Yao, J. P.

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett.32(24), 3486–3488 (2007).
[CrossRef] [PubMed]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007).
[CrossRef]

Ye, J.

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Zou, X.

IEE Proc. F (1)

H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).

IEEE Microw. Wirel. Compon. Lett. (2)

H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008).
[CrossRef]

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000).
[CrossRef] [PubMed]

IEEE Trans. Microw. Theory Tech. (4)

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008).
[CrossRef] [PubMed]

Other (4)

A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).

O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52.
[CrossRef]

M. Miyakawa and T. Hayashi, “Non-invasive thermometry using a chirp pulse microwave—-Tomographic measurement of temperature change in saline solution phantom of the human body,” in Proceedings of the 24th European Microwave Conference, 613–618 (1994).

J. H. Jacobi and L. E. Larsen, “Linear FM pulse compression radar techniques applied to biological imaging,” in Medical Applications of Microwave Imaging (IEEE, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the proposed method to generate linearly chirped microwave pulse.

Fig. 2
Fig. 2

Simulation results. (a) Temporal profile of the simulated linearly chirped microwave pulse. (b) STFT analysis of the microwave pulse in (a). (c) Autocorrelation of the microwave pulse in (a).

Fig. 3
Fig. 3

Experiment configuration to generate linearly chirped microwave pulse. FSPL: Femtosecond Pulsed Laser; CW: Continuous Wave; OBPF: Optical Band-Pass Filter; EDFA: Erbium Doped Fiber Amplifier; DCF: Dispersion Compensation Fiber; OC: Optical Coupler; PD: Photodetector; DSO: Digital Sampling Oscilloscope; OSA: Optical Spectrum Analyzer.

Fig. 4
Fig. 4

Measured results before heterodyne beating. (a) Spectrum of the FSPL (red line), the filtered optical spectrum (black line). (b) Temporal profile of the dispersed optical pulse.

Fig. 5
Fig. 5

Experiment results for optical frequency deviation of zero. (a) and (d) Temporal profiles of two microwave pulses captured at two different time. (b) STFT analysis of (a), black dotted line indicates a slope of 20.08GHz/ns. (c) Autocorrelation of (a) with FWHM of 20ps. (e) STFT analysis of (d), black dotted line indicates a slope of 19.93GHz/ns. (f) Autocorrelation of (d) with FWHM of 20ps.

Fig. 6
Fig. 6

Experiment results for different optical frequency deviations. (a) and (d) The temporal profiles of the measured microwave pulses for frequency deviation of −33GHz and 33GHz respectively. (b) STFT analysis of (a), black dotted line with a slope of −19.95GHz/ns. (c) Autocorrelation of (a) with FWHM of 20ps. (e) STFT analysis of (d), black dotted line with a slope of 20.02GHz/ns. (f) Autocorrelation of (d) with FWHM of 20ps.

Fig. 7
Fig. 7

Conceptual algorithm of the off-line-MTDS for verifying range resolution of the generated chirped microwave pulse.

Fig. 8
Fig. 8

Magnitude spectrums of f out (t) in condition that (a) τ 2 = 500ps, (b) τ 2 = 440ps, (c) τ 2 = 420ps and (d) τ 2 = 410ps. Insets show the detailed spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y(t)=Cexp( j t 2 2 Φ ¨ ) { F[ x(t) ] } ω=t/ Φ ¨ ,
y(t)=Cexp( j ω 0 t )exp( j t 2 2 Φ ¨ ) { F[ x(t) ] } ω ω 0 =t/ Φ ¨ .
i(t)=[ y 1 (t) y 1 * (t) ] ={ 1+ C 2 A 2 (t)+2cos[ψ(t)]A(t) },
R= 2 ψ(t) 2π t 2 = 1 2π Φ ¨ , f center = ω 0 ω CW 2π ,B c λ 0 2 Δλ,TBWP 4π c 2 λ 0 4 Φ ¨ (Δλ) 2 ,

Metrics