Abstract

In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu3+ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition 5D07F1 is found to be very different from its effect on the electric dipole transitions. This makes Eu3+-containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
  3. M. A. Noginov and V. A. Podolskiy, “Tutorials in Metamaterials (Taylor & Francis, 2011).
  4. N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103(7), 07E901 (2008).
    [CrossRef]
  5. N. Noginova, Yu. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express17(13), 10767–10772 (2009).
    [CrossRef] [PubMed]
  6. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
    [CrossRef]
  7. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  8. V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
    [CrossRef]
  9. K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
    [CrossRef]
  10. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A16(5), 1168 (1999).
    [CrossRef]
  11. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).
  12. H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
    [CrossRef]
  13. J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
    [CrossRef]
  14. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67(12), 1607–1615 (1977).
    [CrossRef]
  15. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am.69(11), 1495–1503 (1979).
    [CrossRef]
  16. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” In Progress in Optics. XII, 162–231 (1974).
  17. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
    [CrossRef]
  18. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
    [CrossRef] [PubMed]
  19. S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett.35(20), 3318–3320 (2010).
    [CrossRef] [PubMed]
  20. S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).
  21. R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
    [CrossRef]
  22. P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
    [CrossRef]
  23. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
    [CrossRef] [PubMed]
  24. L. Novotny and B. Hetcht, Principles of Nano-optics (Cambridge University, 2007).
  25. R. Hussain, C. Whitefield, C. Carroll, J. Vella, A. Urbas, and N. Noginova, “Emission of electric and magnetic dipoles in plasmonic systems,” in CLEO Technical Digest (CLEO, 2012), paper # QM4H.7.
  26. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).
  27. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
    [CrossRef]
  28. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  29. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55(11), 7249–7254 (1997).
    [CrossRef]
  30. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
    [CrossRef]
  31. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).
  32. D. Ingram, Spectroscopy at Radio and Microwave Frequencies (Kluwer Academic, 1967).
  33. C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Courier Dover, 1997).

2013 (1)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).

2012 (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

2011 (2)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

N. Noginova, Yu. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express17(13), 10767–10772 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

2008 (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
[CrossRef]

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103(7), 07E901 (2008).
[CrossRef]

2007 (2)

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

2005 (2)

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

2003 (2)

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (2)

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A16(5), 1168 (1999).
[CrossRef]

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1997 (1)

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55(11), 7249–7254 (1997).
[CrossRef]

1979 (1)

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

1977 (1)

1975 (1)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Amos, R. M.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55(11), 7249–7254 (1997).
[CrossRef]

Barnakov, Y.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

Barnakov, Yu.

Barnes, W. L.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55(11), 7249–7254 (1997).
[CrossRef]

Baym, G.

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

Beermann, J.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

Boltasseva, A.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

Bozhevolnyi, S. I.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

Brueck, S. R. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
[CrossRef]

Deguzman, P. C.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Fan, W.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

Gao, L.

K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Gippius, N. A.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
[CrossRef]

Guo, H. C.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Huang, C.

K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
[CrossRef]

Jones, M. W.

Jung, J.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

Karaveli, S.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett.35(20), 3318–3320 (2010).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).

Kildishev, A. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
[CrossRef]

Kudryashova, V. A.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

Kunz, R. E.

Legendziewicz, J.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, H.

Lukosz, W.

Malloy, K. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

Mavy, M.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103(7), 07E901 (2008).
[CrossRef]

Meier, J. T.

Miller, A. H.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

Naik, G. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

Nau, D.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Ni, X.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

Noginov, M. A.

Noginova, N.

Nordin, G. P.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Radke, A.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Reifenberger, J. G.

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
[CrossRef]

Selvin, P. R.

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

Shalaev, V. M.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
[CrossRef]

Snyder, G. E.

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

Søndergaard, T.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

Soref, R. A.

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).

Stodolka, J.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Sun, G.

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).

Szostak, R.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Tsaryuk, V. I.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

Wang, K.

K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
[CrossRef]

Weinstein, A. J.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Worthing, P. T.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
[CrossRef]

Yang, X. L.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

Zhang, X. P.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

Zhu, G.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103(7), 07E901 (2008).
[CrossRef]

Zhuravlev, K. P.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

Zia, R.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett.35(20), 3318–3320 (2010).
[CrossRef] [PubMed]

Zolin, V. F.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Appl. Phys. B (2)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B103(3), 553–558 (2011).
[CrossRef]

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B81(2-3), 271–275 (2005).
[CrossRef]

J. Appl. Phys. (1)

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys.103(7), 07E901 (2008).
[CrossRef]

J. Appl. Spectrosc. (1)

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc.74(1), 51–59 (2007).
[CrossRef]

J. Chem. Phys. (2)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60(7), 2744–2748 (1974).
[CrossRef]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys.63(4), 1589–1595 (1975).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B. (2)

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B.26, 121–124 (2009).

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons figures of merit,” J. Opt. Soc. Am. B.24, 1968–1980 (2007).

J. Photochem. Photobiol. Chem. (1)

K. Wang, L. Gao, and C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem.156(1-3), 39–43 (2003).
[CrossRef]

J. Phys. Chem. B (1)

J. G. Reifenberger, G. E. Snyder, G. Baym, and P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B107(46), 12862–12873 (2003).
[CrossRef]

J. Vac. Sci. & Techn. B (1)

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. & Techn. B23, 2700–2704 (2005).

Nano Lett. (1)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett.13, 2264-2269 (2013).

Nat Commun (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. A (1)

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A59(1), 865–872 (1999).
[CrossRef]

Phys. Rev. B (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B78(20), 205405 (2008).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55(11), 7249–7254 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

Other (7)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” In Progress in Optics. XII, 162–231 (1974).

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).

M. A. Noginov and V. A. Podolskiy, “Tutorials in Metamaterials (Taylor & Francis, 2011).

D. Ingram, Spectroscopy at Radio and Microwave Frequencies (Kluwer Academic, 1967).

C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Courier Dover, 1997).

L. Novotny and B. Hetcht, Principles of Nano-optics (Cambridge University, 2007).

R. Hussain, C. Whitefield, C. Carroll, J. Vella, A. Urbas, and N. Noginova, “Emission of electric and magnetic dipoles in plasmonic systems,” in CLEO Technical Digest (CLEO, 2012), paper # QM4H.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectra of spontaneous emission in (a) Eu(TTA)3(L18), and (b) Eu(NO3)3·Bpy2. (c) Energy level diagram of Eu3+ ions in an organic material; 7Fn and 5D0 are the ground state and the excited states of Eu3+; S0,1 and T1 are the singlet states and the triplet state of the organic ligand.

Fig. 2
Fig. 2

Dipoles in close vicinity of a perfect mirror: interference is constructive for electric dipoles, which are oriented perpendicular to the interface, and destructive for dipoles oriented parallel to the surface. The effects are opposite for magnetic dipoles.

Fig. 3
Fig. 3

Typical emission spectra of Eu(NO3)3·Bpy2, (a) and (b), and angular dependences of Ip/Is (c) and (d), in relatively thick (~70 nm), (a) and (c), and very thin (< 20 nm), (b) and (d), organic films deposited on glass (G), silver (Ag) and gold (Au) films. The emission spectra were collected at close to normal observation angle, and normalized to the spectral maximum

Fig. 4
Fig. 4

(a) Scanning Electron Microscope (SEM) image of the gold strip array. (b) Reflection spectra. (c) Schematics of measurements (top view and mutual orientation of strips and E); (d) I/I|| for the light scattered forward (F) and backward (B).

Fig. 5
Fig. 5

Kinetics of Eu3+ emission in films of (a) Eu(TTA)3(L18), and (b) Eu(NO3)3·Bpy2 deposited on glass (1), gold (2) and gold nanostrips (3).

Fig. 6
Fig. 6

(a) Schematics of the sample and setup in the emission measurements. (b) Magnetic dipole emission observed in films of Eu(TTA)3 complex in the backward (B) and forward (F) directions at parallel (||) and perpendicular (⊥) polarizations; (c) same for Eu(NO3)3·Bpy2. All spectra are normalized to the maximum at ~0.61 μm.

Fig. 7
Fig. 7

(a) Emission spectra of the Eu(NO3)3·Bpy2 doped film collected in the backward direction at parallel and perpendicular polarizations. Insets show magnified parts of spectra. (b) The ratio I/I|| for emission collected in the backward (B) and forward (F) directions. (c) The ratio of emission intensities in the forward and backward directions IF/If for perpendicular and parallel polarizations. For (b) and (c): Eu(NO3)3·Bpy2 - closed symbols and Eu(TTA)3(L18) - open symbols. The error bar is shown for weak transitions. Magnetic transition is indicated with the arrow. (d) The ratios IF/IB measured for scattered light.

Fig. 8
Fig. 8

Reflected (a) and transmitted (b) power according to equivalent circuit consideration. Parameters used are β1 = β 2 = 0.2, Q0 = 5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P r = P 0 (1 β 1 ) 2 + ω 0 2 ω 2 ( Δω δ ) 2 (1+ β 1 ) 2 + ω 0 2 ω 2 ( Δω δ ) 2 ,
P t = P 0 | 2 β 1 β 2 1+ β 1 + β 2 +i Q 0 ( ω ω 0 ω 0 ω ) | 2

Metrics