Abstract

We numerically demonstrate colorless reception of dense wavelength division multiplexed channels in the C-band for high-order QAM (16-64 QAM) signals on a 120° monolithically integrated downconverter, based on a 2x3 MMI with calibrated analog IQ recovery. It is shown that the proposed calibrated 120° downconverter can increase up to 80 the number of coincident channels in an efficient way, exhibiting good signal dynamic range and high fabrication yield. As this downconverter makes use of the minimum number of power outputs required for perfect recovery of IQ signals, it becomes an interesting alternative to conventional 90° based downconverters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .
  2. Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .
  3. R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM, 2009), paper TuB2.2, pp. 167–170.
  4. B. Zhang, C. Malouin, and T. J. Schmidt, “Towards full band colorless reception with coherent balanced receivers,” Opt. Express20(9), 10339–10352 (2012).
    [CrossRef] [PubMed]
  5. L. E. Nelson, S. L. Woodward, S. Foo, M. Moyer, D. J. S. Beckett, M. O’Sullivan, and P. D. Magill, “Detection of a single 40 Gb/s polarization-multiplexed QPSK channel with a real-time intradyne receiver in the presence of multiple coincident WDM channels,” J. Lightwave Technol.28(20), 2933–2943 (2010).
    [CrossRef]
  6. V. E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.
  7. P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, “Enhanced monolithically integrated coherent 120° downconverter with high fabrication yield,” Opt. Express20(21), 23013–23018 (2012).
    [CrossRef] [PubMed]
  8. P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
    [CrossRef]
  9. F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
    [CrossRef]
  10. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
    [CrossRef] [PubMed]
  11. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008).
    [CrossRef] [PubMed]
  12. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express20(2), 1164–1171 (2012).
    [CrossRef] [PubMed]
  13. A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
    [CrossRef]
  14. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
    [CrossRef]
  15. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
    [CrossRef]
  16. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]

2012

2011

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
[CrossRef]

2010

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

L. E. Nelson, S. L. Woodward, S. Foo, M. Moyer, D. J. S. Beckett, M. O’Sullivan, and P. D. Magill, “Detection of a single 40 Gb/s polarization-multiplexed QPSK channel with a real-time intradyne receiver in the presence of multiple coincident WDM channels,” J. Lightwave Technol.28(20), 2933–2943 (2010).
[CrossRef]

2009

2008

T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008).
[CrossRef] [PubMed]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

1994

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

1988

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Adamczyk, O.

Bachmann, M.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Beckett, D. J. S.

Besse, A.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Bosisio, R. G.

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Edvold, B.

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Foo, S.

Geisler, T.

Ghannouchi, F. M.

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Gnauck, A. H.

Herath, V.

Hoffmann, S.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Magill, P. D.

Malouin, C.

Melchior, H.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Molina-Fernández, I.

P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, “Enhanced monolithically integrated coherent 120° downconverter with high fabrication yield,” Opt. Express20(21), 23013–23018 (2012).
[CrossRef] [PubMed]

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
[CrossRef] [PubMed]

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
[CrossRef]

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Moscoso-Mártir, A.

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
[CrossRef] [PubMed]

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
[CrossRef]

Moyer, M.

Nelson, L. E.

Noé, R.

O’Sullivan, M.

Ortega-Monux, A.

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
[CrossRef]

Ortega-Moñux, A.

Pérez-Lara, P.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Peveling, R.

Pfau, T.

Porrmann, M.

Raybon, G.

Reyes-Iglesias, P. J.

Rueda-Pérez, A.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Savory, S. J.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Schmidt, T. J.

Smit, M. K.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Soldano, L. B.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Wangüemert-Pérez, J. G.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Winzer, P. J.

Woodward, S. L.

Xie, C.

Zhang, B.

Zhu, B.

IEEE Photon. Technol. Lett.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Prog. Electromagnetics Res.

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011).
[CrossRef]

Other

Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .

Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .

R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM, 2009), paper TuB2.2, pp. 167–170.

V. E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conventional 90° hybrid downconverter.

Fig. 2
Fig. 2

(a) Transversal geometry of the InP/InGaAsP rib waveguides used in this work. H = 1µm, D = 0.5µm, nInP = 3.18, nInGaAsP = 3.27. (b) CMRR for input signal port versus wavelength in the C-band for the conventional 90° downconverter as a function of the fabrication tolerance (Case I/II).

Fig. 3
Fig. 3

Calibrated 120° coupler downconverter.

Fig. 4
Fig. 4

CMRR versus wavelength for the calibrated 120°/conventional 90° downconverters as a function of the fabrication tolerance (Case I/II). (a) 120° downc. Exact coefficients at 1550 nm (b) 120° downc. Coefficients with a 5% deviation.

Fig. 5
Fig. 5

OSNR penalty (for a BER = 10−4) versus input signal power in a conventional 90° hybrid (filled circles) and calibrated 120° coupler (empty circles) downconverters, following the nominal design (Case I), as a function of the number of WDM channels (a) 16-QAM transmission (b) 64-QAM transmission.

Fig. 6
Fig. 6

OSNR penalty (for a BER = 10−4) versus input signal power in a conventional 90° hybrid (filled circles) and calibrated120° coupler (empty circles) downconverters, following moderate fabrication errors (Case II), as a function of the number of WDM channels (a) 16-QAM (b) 64-QAM transmission.

Fig. 7
Fig. 7

Proposals of calibrated 90° downconverters: (a) 90° downc. with calibrated analog IQ recovery from the four output photocurrents, (b) 90° downc. with calibrated weights between each pair of photocurrents.

Fig. 8
Fig. 8

OSNR penalty (for a BER = 10−4) versus input signal power in a calibrated 120° downconverter (empty circles) and the calibrated Option B of the 90° downconverter (filled squares), following moderate fabrication errors (Case II), as a function of the number of WDM channels (a) 16-QAM (b) 64-QAM transmission.

Tables (3)

Tables Icon

Table 1 Parameters Derived in [13] to Characterize Conventional 90° Hybrid Integrated Coherent Receiver

Tables Icon

Table 2 Parameters to Characterize 120° Coherent Receiver

Tables Icon

Table 3 Dynamic Range for the Conventional 90°/ Calibrated 120° Downconverter as a Function of the Number of WDM Channels

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

e s ( t )=Re{ n=1 N e ˜ sn e j ω n t }
e LO (t)=Re { P LO e j ω k t } ;k[ 1,N ]
e ˜ s n = P s ( I n +j Q n )
i i k = R i | n=1 N S i1 n e ˜ sn e j ω n t + S i2 k P LO e j ω k t | 2
[ i I k i Q k ]=[ i 3 k i 4 k i 5 k i 6 k ]=[ α Ik α Qk ]+ n=1 N [ γ In γ Qn ][ I n 2 + Q n 2 ] +[ Re( u k ) Im( u k ) Re( v k ) Im( v k ) ][ I k Q k ]
[ i I k i Q k ] Interf = [ i 3 k i 4 k i 5 k i 6 k ] Interf = P s n=1 N [ R 3 | S 31 n | 2 R 4 | S 41 n | 2 R 5 | S 51 n | 2 R 6 | S 61 n | 2 ][ I n 2 + Q n 2 ]
CMR R SI 90° ( ω n )= i 3 n i 4 n i 3 n + i 4 n | Interf = R 3 | S 31 n | 2 R 4 | S 41 n | 2 R 3 | S 31 n | 2 + R 4 | S 41 n | 2 CMR R SQ 90° ( ω n )= i 5 n i 6 n i 5 n + i 6 n | Interf = R 5 | S 51 n | 2 R 6 | S 61 n | 2 R 5 | S 51 n | 2 + R 6 | S 61 n | 2
[ i 3 k i 4 k i 5 k ]=[ α 3k α 4k α 4k ]+ n=1 N [ γ 3n γ 4n γ 5n ][ I n 2 + Q n 2 ] +[ Re( u 1k ) Im( u 1k ) Re( u 2k ) Im( u 2k ) Re( u 3k ) Im( u 3k ) ][ I k Q k ]
i I k = A I3 i 3 k + A I4 i 4 k + A I5 i 5 k i Q k = A Q3 i 3 k + A Q4 i 4 k + A Q5 i 5 k
A I3 = A I5 = 1 2 , A I4 =1 ; A Q3 = 3 2 , A Q4 =0 , A Q5 = 3 2
[ i I k i Q k ] Interf = P s n=1 N [ A I3 R 3 | S 31 n | 2 + A I4 R 4 | S 41 n | 2 + A I5 R 5 | S 51 n | 2 A Q3 R 3 | S 31 n | 2 + A Q4 R 4 | S 41 n | 2 + A Q5 R 5 | S 51 n | 2 2 ][ I n 2 + Q n 2 ]
CMR R SI 120° ( ω n )= A I3 i 3 n + A I4 i 4 n + A I5 i 5 n | A I3 | i 3 n +| A I4 | i 4 n +| A I5 | i 5 n | Interf = A I3 R 3 | S 31 n | 2 + A I4 R 4 | S 41 n | 2 + A I5 R 5 | S 51 n | 2 | A I3 | R 3 | S 31 n | 2 +| A I4 | R 4 | S 41 n | 2 +| A I5 | R 5 | S 51 n | 2 CMR R SQ 120° ( ω n )= A Q3 i 3 n + A Q4 i 4 n + A Q5 i 5 n | A Q3 | i 3 n +| A Q4 | i 4 n +| A Q5 | i 5 n | Interf = A Q3 R 3 | S 31 n | 2 + A Q4 R 4 | S 41 n | 2 + A Q5 R 5 | S 51 n | 2 | A Q3 | R 3 | S 31 n | 2 +| A Q4 | R 4 | S 41 n | 2 +| A Q5 | R 5 | S 51 n | 2

Metrics