Abstract

We propose a gold modified bow-tie plasmonic nano-antenna, which can be suitably used in combination with total internal reflection fluorescence microscopy. The plasmonic nano-antenna, supporting well-separated multiple resonances, not only concentrates the total internal reflection evanescent field at the deep subwavelength scale, but also enhances fluorescence emission by the Purcell effect. Finite-difference time-domain computations show that the enhancement of the excitation light strongly correlates with the far-field radiation pattern radiated from the antenna. Depending on the antenna geometry, the resonant modes are widely tuned and their wavelengths can be easily matched to the diverse emission or excitation wavelengths of fluorophores.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990).
    [PubMed]
  2. K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
    [CrossRef]
  3. M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
    [CrossRef] [PubMed]
  4. J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997).
    [CrossRef] [PubMed]
  5. L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
    [CrossRef] [PubMed]
  6. S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
    [CrossRef]
  7. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
    [CrossRef] [PubMed]
  8. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  10. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
    [CrossRef] [PubMed]
  11. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
    [CrossRef]
  12. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
    [CrossRef] [PubMed]
  13. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
    [CrossRef]
  14. K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).
  15. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
    [CrossRef]
  16. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
    [CrossRef] [PubMed]
  17. K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
    [CrossRef] [PubMed]
  18. B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
    [CrossRef]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  20. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2006).
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  23. C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
    [CrossRef] [PubMed]
  24. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  25. Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006).
    [CrossRef]
  26. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
    [CrossRef] [PubMed]
  27. T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
    [CrossRef] [PubMed]
  28. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
    [CrossRef] [PubMed]
  29. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
    [CrossRef]
  30. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2012).
  31. K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
    [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).
  33. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
    [CrossRef] [PubMed]

2013

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

2012

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

2011

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
[CrossRef] [PubMed]

2010

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
[CrossRef]

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

2008

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

2006

Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006).
[CrossRef]

2004

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

2003

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

2000

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

1999

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

1997

J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997).
[CrossRef] [PubMed]

1996

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
[CrossRef]

1990

W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990).
[PubMed]

1983

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Ahluwalia, A.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Andrade, J. D.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Baldini, F.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
[CrossRef] [PubMed]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
[CrossRef]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Buijs, J.

J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997).
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Choi, W.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Demarest, K.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
[CrossRef]

Descrovi, E.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Domenici, C.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Duschl, C.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Everitt, H. O.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Frascella, F.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Geobaldo, F.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Giorgis, F.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Halas, N. J.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Harris, J. S.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Hein, B.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Hell, S. W.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Hlady, V.

J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997).
[CrossRef] [PubMed]

Hu, C.-D.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Huang, K. C. Y.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
[CrossRef] [PubMed]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Huang, Z.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
[CrossRef]

Huo, Y.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

Jaeger, M. S.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
[CrossRef] [PubMed]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
[CrossRef]

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Kang, T.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Kerppola, T. K.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Kikuta, T.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Kim, B.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Kim, D. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

King, N. S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Knight, M. W.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Lankenau, A.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Laschewsky, A.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Lee, H.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Li, Z.

Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006).
[CrossRef]

Liu, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Lutz, J.-F.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

Mencaglia, A.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nagai, S.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Nagamatsu, S.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Nakamichi, Y.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Nishiwaki, C.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Nordlander, P.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Ohara-Imaizumi, M.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Pala, R.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
[CrossRef]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, Q.-H.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Plumb, R.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Quinn, R. D.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Reichert, M.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

Reichert, W. M.

W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990).
[PubMed]

Rivolo, P.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Rockhold, S. A.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

Sarmiento, T.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

Sciacca, B.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Seo, M. K.

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

Seo, M.-K.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express19(20), 19084–19092 (2011).
[CrossRef] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Tedeschi, L.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Truskey, G. A.

W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990).
[PubMed]

Uhlig, K.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

van Wagenen, R. A.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Venturello, A.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Willig, K. I.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Wischerhoff, E.

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Yoon, I.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zhang, Y.

Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006).
[CrossRef]

Angew. Chem.

Z. Li and Y. Zhang, “Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission,” Angew. Chem.118(46), 7896 (2006).
[CrossRef]

Biochem. J.

M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: Different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat β-cells,” Biochem. J.381(1), 13–18 (2004).
[CrossRef] [PubMed]

Biosens. Bioelectron.

L. Tedeschi, C. Domenici, A. Ahluwalia, F. Baldini, and A. Mencaglia, “Antibody immobilisation on fibre optic TIRF sensors,” Biosens. Bioelectron.19(2), 85–93 (2003).
[CrossRef] [PubMed]

Chem. Rev.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone transformation for scatters buried in stratified grounds,” IEEE Trans. Antenn. Propag.44(8), 1150–1157 (1996).
[CrossRef]

J. Am. Chem. Soc.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

J. Cell Sci.

W. M. Reichert and G. A. Truskey, “Total internal reflection microscopy,” J. Cell Sci.96, 219–230 (1990).
[PubMed]

J. Colloid Interface Sci.

J. Buijs and V. Hlady, “Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF,” J. Colloid Interface Sci.190(1), 171–181 (1997).
[CrossRef] [PubMed]

J. Electroanal. Chem.

S. A. Rockhold, R. D. Quinn, R. A. van Wagenen, J. D. Andrade, and M. Reichert, “Total internal reflection fluorescence as a quantitative probe of protein adsorption,” J. Electroanal. Chem.150(1-2), 261–275 (1983).
[CrossRef]

J. Microsc.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. C

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010).
[CrossRef]

Nano Lett.

T. Kang, W. Choi, I. Yoon, H. Lee, M.-K. Seo, Q.-H. Park, and B. Kim, “Rainbow radiating single-crystal Ag nanowire nanoantenna,” Nano Lett.12(5), 2331–2336 (2012).
[CrossRef] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Nat Commun

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat Commun4, 1750 (2013).
[CrossRef] [PubMed]

K. C. Y. Huang, M. K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat Commun3, 1005 (2012).

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat Commun2, 283 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Nat. Photonics

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Science

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, and F. Geobaldo, “Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules,” Sens. Actuators B Chem.137(2), 467–470 (2009).
[CrossRef]

Soft Matter

K. Uhlig, E. Wischerhoff, J.-F. Lutz, A. Laschewsky, M. S. Jaeger, A. Lankenau, and C. Duschl, “Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy,” Soft Matter6(17), 4262–4267 (2010).
[CrossRef]

Other

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2006).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2012).

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of a plasmonic nano-antenna coupled to TIRF microscopy. The nano-antenna is formed on a glass substrate and covered with water. The blue cone represents the TIR critical angle. The excitation light is injected at an angle larger than the TIR critical angle and the output fluorescence emission is detected in the upward or downward direction. The modified bow-tie nano-antenna concentrates the evanescent excitation illumination at the sub-wavelength nano-gap and boosts the spontaneous fluorescence emission simultaneously. (b) Schematic spectra of the resonant modes of the plasmonic nano-antenna. When the resonance peak of the two separated antenna modes (red and blue solid lines) overlaps with the emission (red dotted line) and excitation (blue dotted line) bands of fluorophores, the fluorescence process performance is doubly enhanced. (c) Expected plasmonic charge distributions of the lowest three modes from the modified bow-tie nano-antenna.

Fig. 2
Fig. 2

(a) Normalized electric field intensity enhancement spectra of the resonant modes. The resonant wavelengths of the first, second, and third modes were approximately 1150, 890, and 670 nm, respectively. The length, width, gap size, and thickness of the antenna were 450, 150, 30, and 55 nm, respectively. (b) Calculated plasmonic charge distributions at the horizontal cross section. Red and blue colors in the scale bars represent the positive and negative signs of the charges. (c) Normalized electric field intensity distribution. Both the first and third modes support the strong field confinement at the nano-gap of the antenna. The distribution was calculated at the cross section of the antenna, 20 nm above the glass substrate. (d) Normalized electric field energy density distribution at the same cross section as (c).

Fig. 3
Fig. 3

Electric field intensity enhancement spectra of the first and third modes depending on the antenna geometry: (a) length, (b) width, (c) gap size, and (d) thickness. The enhancement was calculated at the center of the nano-gap 10 nm above the substrate. Here, we set the initial geometric parameters, namely, antenna length, width, gap size, thickness, as 450, 150, 30, 55 nm and varied only one of the parameters.

Fig. 4
Fig. 4

(a) Mapping scheme of the far-field radiation pattern from the hemispherical domain (3D) to the polar domain (2D). (b) Far-field radiation distribution of the first mode. We also plot angular distributions over the meridional paths for ϕ = 0° (red) and ϕ = 90° (blue). The far-field patterns on the left side are shown using a logarithmic scale and the angular distributions are shown using a linear scale. The far-field distribution was normalized by the maximum radiation intensity. The green solid line in the angular distribution indicates the TIR critical angle of ~66.5° at the glass-water interface. (c) Far-field radiation pattern of the third mode. The angular plot for the meridional path for ϕ = 34°, where the maximum radiation intensity of the third mode appears, is also included. The white dashed line in the far-field pattern corresponds to the meridional path for ϕ = 34°. The antenna structure and the resonant wavelengths of the modes are identical to those in Fig. 2.

Fig. 5
Fig. 5

(a) Schematic of the angled plane wave incident on the modified bow-tie nano-antenna. The incident azimuthal angle ϕ was fixed at 34°, where the maximum intensity of far-field radiation appears. (b) Angular plot of electric field intensity enhancement of the excitation light as a function of the incident polar angle θ. Both the field intensity enhancement of the incident excitation light and the far-field radiation intensity of the antenna mode are plotted. The enhancement was calculated at the center of the nano-gap, 10 nm above the substrate, where the dipole source was positioned for the far-field calculation whose result is shown in Fig. 3. (c) Electric field intensity enhancement profiles at different incident polar angles (logarithmic scale). The antenna structure and the resonant wavelength of the modes are identical to those shown in Figs. 2 and 3.

Fig. 6
Fig. 6

Spectra of the Purcell enhancement of the first mode depending on the antenna geometry: (a) length and (b) gap size. A single electric dipole source was located at the center of nano-gap 10 nm above the substrate, where the field intensity enhancement was calculated. The ratio of the total emission power of the dipole source with and without the nano-antenna was calculated to obtain the Purcell enhancement. The overlapping solid lines are the field enhancement spectra that match those shown in Fig. 3. The antenna structure parameters are identical to those for Figs. 3(a) and 3(b).

Metrics