Abstract

Due to its unique non-diffracting and self-reconstructing nature, Bessel beams have been successfully adopted to trap multiple particles along the beam’s axial direction. However, prior bulk-optic based Bessel beams have a fundamental form-factor limitation for in situ, in-vitro, and in-vivo applications. Here we present a novel implementation of Fourier optics along a single strand of hybrid optical fiber in a monolithic manner that can generate pseudo Bessel beam arrays in two-dimensional space. We successfully demonstrate unique optofluidic transport of the trapped dielectric particles along a curvilinear optical route by multiplexing the fiber optic pseudo Bessel beams. The proposed technique can form a new building block to realize reconfigurable optofluidic transportation of particulates that can break the limitations of both prior bulk-optic Bessel beam generation techniques and conventional microfluidic channels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  3. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
    [CrossRef]
  4. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006), Chap. 3.
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
    [CrossRef] [PubMed]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
    [CrossRef]
  7. J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
    [CrossRef]
  8. F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007).
    [CrossRef] [PubMed]
  9. J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002).
    [CrossRef]
  10. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
    [CrossRef]
  11. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  12. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  13. J. McLeod, “The Axicon: a New Type of Optical Element,” J. Opt. Soc. Am.44(8), 592–597 (1954).
    [CrossRef]
  14. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A8(6), 932–942 (1991).
    [CrossRef]
  15. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
    [CrossRef]
  16. J. Canning, “Diffraction-free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun.207(1-6), 35–39 (2002).
    [CrossRef]
  17. J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in Air by Field Superposition of Scattered Light within a Fresnel Fiber,” Opt. Lett.28(4), 230–232 (2003).
    [CrossRef] [PubMed]
  18. J. Canning, E. Buckley, and K. Lyytikainen, “Multiple Source Generation using Air-structured Optical Waveguides for Optical Field Shaping and Transformation within and Beyond the Waveguide,” Opt. Express11(4), 347–358 (2003).
    [CrossRef] [PubMed]
  19. J. Canning, Fresnel Optics Inside Optical Fibres, in Photonics Research Developments, (Nova Science Publishers, 2008) Chap 5.
  20. T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys.77(3), 977–1026 (2005).
    [CrossRef]
  21. Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
    [CrossRef]
  22. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003).
    [CrossRef] [PubMed]
  23. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered Fiber Optical Tweezers for Microscopic Particle Trapping: Fabrication and Application,” Opt. Express14(25), 12510–12516 (2006).
    [CrossRef] [PubMed]
  24. C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
    [CrossRef]
  25. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a Fiber-optical Light-Force Trap,” Opt. Lett.18(21), 1867–1869 (1993).
    [CrossRef] [PubMed]
  26. S. R. Lee, J. Kim, S. Lee, Y. Jung, J.-K. Kim, and K. Oh, “All-silica Fiber Bessel-like Beam Generator and Its Applications in Longitudinal Optical Trapping and Transport of Multiple Dielectric Particles,” Opt. Express18(24), 25299–25305 (2010).
    [CrossRef] [PubMed]
  27. J.-K. Kim, J. Kim, Y. Jung, W. Ha, Y.-S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact All-fiber Bessel Beam Generator Based on Hollow Optical Fiber Combined with a Hybrid Polymer Fiber Lens,” Opt. Lett.34(19), 2973–2975 (2009).
    [CrossRef] [PubMed]
  28. J. Kim, Y. Jeong, S. Lee, W. Ha, J.-S. Shin, and K. Oh, “Fourier Optics along a Hybrid Optical Fiber for Bessel-like Beam Generation and Its Applications in Multiple-particle Trapping,” Opt. Lett.37(4), 623–625 (2012).
    [CrossRef] [PubMed]
  29. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel Hollow Optical Fibers and Their Applications in Photonics Devices for Optical Communications,” J. Lightwave Technol.23(2), 524–532 (2005).
    [CrossRef]
  30. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
    [CrossRef]
  31. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2006) Chap. 4.
  32. H. E. Arabi, S. An, and K. Oh, “Fiber Optic Engine For Micro Projection Display,” Opt. Express18(5), 4655–4663 (2010).
    [CrossRef] [PubMed]
  33. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B20(7), 1568–1574 (2003).
    [CrossRef]
  34. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express16(13), 9306–9317 (2008).
    [CrossRef] [PubMed]
  35. Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system,” Opt. Express17(24), 21680–21690 (2009).
    [CrossRef] [PubMed]

2012

2010

2009

2008

M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express16(13), 9306–9317 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

2007

Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
[CrossRef]

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

2006

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered Fiber Optical Tweezers for Microscopic Particle Trapping: Fabrication and Application,” Opt. Express14(25), 12510–12516 (2006).
[CrossRef] [PubMed]

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

2005

2004

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
[CrossRef]

2003

2002

J. Canning, “Diffraction-free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun.207(1-6), 35–39 (2002).
[CrossRef]

J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

2001

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

1997

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

1993

1991

1987

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

1986

1954

An, S.

Angelis, F. D.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Arabi, H. E.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Bardell, R. L.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003).
[CrossRef] [PubMed]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Bernet, S.

Bjorkholm, J. E.

Blakely, J. T.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Buckley, E.

Cabrera, C. R.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003).
[CrossRef] [PubMed]

Canning, J.

Chang, S.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
[CrossRef]

Choi, S.

Chu, S.

Constable, A.

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

Di Fabrizio, E.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Fournier, J.-M.

F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Frick, M.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Gordon, R.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Guo, C.

Ha, W.

Han, M.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
[CrossRef]

Herman, R. M.

Hjort, K.

Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
[CrossRef]

Jacquot, P.

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Jeong, Y.

Jeong, Y.-S.

Jung, Y.

Kawano, M.

Kim, J.

Kim, J.-K.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Lee, J. W.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel Hollow Optical Fibers and Their Applications in Photonics Devices for Optical Communications,” J. Lightwave Technol.23(2), 524–532 (2005).
[CrossRef]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
[CrossRef]

Lee, S.

Lee, S. R.

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Liu, A. Q.

Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
[CrossRef]

Liu, Y.

Liu, Z.

Lyytikainen, K.

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

McLeod, J.

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Merenda, F.

F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Mervis, J.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

Molloy, J. E.

J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

Oh, K.

Padgett, M. J.

J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

Prentiss, M.

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys.77(3), 977–1026 (2005).
[CrossRef]

Ritsch-Marte, M.

Rohner, J.

F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Salathé, R.-P.

Salathè, R.-P.

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Shin, J.-S.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

Singer, W.

Sinton, D.

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys.77(3), 977–1026 (2005).
[CrossRef]

Tünnermann, A.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Weigl, B. H.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003).
[CrossRef] [PubMed]

Wiggins, T. A.

Wu, Z.

Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yang, J.

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Yu, M.

Yuan, L.

Zarinetchi, F.

Adv. Drug Deliv. Rev.

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003).
[CrossRef] [PubMed]

Biophys. J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Contemp. Phys.

J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007).
[CrossRef]

J. Nanophotonics

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Photonics

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008).
[CrossRef]

Nature

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

J. Canning, “Diffraction-free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun.207(1-6), 35–39 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Proc. SPIE

J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006).
[CrossRef]

Rev. Mod. Phys.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys.77(3), 977–1026 (2005).
[CrossRef]

Other

J. Canning, Fresnel Optics Inside Optical Fibres, in Photonics Research Developments, (Nova Science Publishers, 2008) Chap 5.

K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2006) Chap. 4.

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006), Chap. 3.

Supplementary Material (1)

» Media 1: MOV (3190 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A schematic diagram of conventional Bessel beam generation by Fourier transform of a thin annular aperture (AA) using a focusing lens with focal length f [12], (b) Principle of implementing Fourier optics along a hybrid optical fiber. Here SMF, HOF [29], CSF, and PL are acronyms for single mode fiber, hollow optical fiber, coreless silica fiber and polymer lens, respectively. (c) Photography of fabricated device. (d) Side-view of the output beam from the fabricated device and (inset) simulation.

Fig. 2
Fig. 2

(a) Schematics of the fiber-optic pseudo Bessel beam array for trapping and transporting of particles along curvilinear optical routes. (b) Monitoring setup of the pseudo Bessel beam and particle movement: trapping and transporting.

Fig. 3
Fig. 3

(a) Captured frames from the pseudo-Bessel beam array experiment (: “a”-304.9μm, “b”-173.5μm, “c”-247.0μm, “d”-239.2μm at frame-1); Frames 3 to 5 correspond to “Crossing-1”. Frames 7 and 8 correspond to “Crossing-2”. (b) Detailed traces of trapped particle’s curvilinear routes at the pseudo-Bessel beam crossings: “Crossing-1” and “Crossing-2” (Media 1).

Fig. 4
Fig. 4

(a)-(d)The comparison of the optical forces at crossings 1 and 2 (a) Optical intensity of fiber 1 and 2 at crossing 1 (b) Derivative of intensity of fiber 1 and 2 at crossing 1 (c) Intensity of fiber 2 and 3 at crossing 2 (d) Derivative of intensity of fiber 2 and 3 at crossing 2 (e) Numerical calculation of particle movement dependent on the gradient force at the crossing point. Here we assumed relative gradient force of 720, 760, and 980 for route (i), (ii), and (iii), respectively.

Fig. 5
Fig. 5

(a) Velocity and (c) acceleration vectors of the particle along the curvilinear optical route. (b) Magnitude and direction of the velocity as a function of time. (d) Magnitude of the acceleration as function of time.

Metrics