Abstract

In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractive-index dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker’s condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  2. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [Crossref] [PubMed]
  3. G. T. Reed, Silicon Photonics: The State of Art (John Wiley & Sons, 2008).
  4. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
    [Crossref]
  5. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
    [Crossref] [PubMed]
  6. M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. 21(28), 2899–2902 (2009).
    [Crossref]
  7. N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express 18(6), 5785–5790 (2010).
    [Crossref] [PubMed]
  8. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  9. B. García-Cámara, Communication Architectures for Systems on Chip (Taylor and Francis, 2011), pp.249–322.
  10. M. A. Pannicia, “Perfect marriage: optics and silicon,” Optik Photonik 6, 34–38 (2011).
  11. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
    [Crossref] [PubMed]
  12. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett. 37(2), 256–258 (2012).
    [Crossref] [PubMed]
  13. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  14. M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
    [Crossref] [PubMed]
  15. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
    [Crossref]
  16. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
    [Crossref] [PubMed]
  17. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [Crossref]
  18. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
    [Crossref]
  19. E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1985).
  20. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
    [Crossref] [PubMed]
  21. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  22. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  23. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  24. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
    [Crossref] [PubMed]
  25. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
    [Crossref] [PubMed]
  26. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
    [Crossref]
  27. B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
    [Crossref] [PubMed]
  28. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
    [Crossref]
  29. M. Kerker, D. S. Wang, and L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983).
    [Crossref]
  30. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
    [Crossref] [PubMed]
  31. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [PubMed]
  32. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
    [Crossref] [PubMed]
  33. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
    [Crossref] [PubMed]
  34. C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
    [Crossref]
  35. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
    [Crossref]
  36. M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
    [Crossref] [PubMed]
  37. K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
    [Crossref]
  38. L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011).
    [Crossref] [PubMed]
  39. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
    [Crossref] [PubMed]
  40. B. García-Cámara, F. González, F. Moreno, R. Gómez-Medina, J. J. Sáenz, and M. Nieto-Vesperinas, Smart Nanoparticles Technology, (InTech, 2012), Chap. 13.
  41. C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  42. P. N. Prasad, Nanophotonics (John Wiley & Sons, 2004).
  43. A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4(1), 041590 (2010).
    [Crossref]
  44. B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
    [Crossref] [PubMed]

2013 (2)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

2012 (8)

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett. 37(2), 256–258 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

2011 (7)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. A. Pannicia, “Perfect marriage: optics and silicon,” Optik Photonik 6, 34–38 (2011).

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011).
[Crossref] [PubMed]

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

2010 (6)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express 18(6), 5785–5790 (2010).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

2009 (6)

A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
[Crossref] [PubMed]

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. 21(28), 2899–2902 (2009).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

2008 (4)

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref] [PubMed]

2007 (1)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

1983 (1)

Aassime, A.

Aizpurua, J.

Alaverdyan, Y.

Albella, P.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Barbillon, G.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bartenlian, B.

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Blanchard-Dionne, A.-P.

Bonroy, K.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Borghs, G.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Brian, B.

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Chantada, L.

Chau, L.-K.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Cheben, P.

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Cheng, T.-E.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Dagens, B.

Delâge, A.

Densmore, A.

Domínguez, C.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

Estévez, M.-C.

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Fenollosa, R.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Février, M.

Foster, M. A.

Froufe-Pérez, L. S.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

García-Cámara, B.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
[Crossref] [PubMed]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref] [PubMed]

García-Etxarri, A.

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

Giles, L.

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Gogol, P.

Golmayo, D.

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. 21(28), 2899–2902 (2009).
[Crossref]

Gómez-Medina, R.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

Gondarenko, A.

González, F.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref] [PubMed]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Guyot, L.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Hsieh, C.-W.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Hsieh, M.-L.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Hsieh, S.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Huang, C.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Huang, K.-W.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Ibisate, M.

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. 21(28), 2899–2902 (2009).
[Crossref]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Janz, S.

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Käll, M.

Kan, H.-C.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Kerker, M.

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

Lagae, L.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Lapointe, J.

Lechuga, L. M.

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Levy, J. S.

Li, Y.-H.

Lin, W.-T.

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Lipson, M.

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Liu, Q. Y.

Liz-Marzán, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

López, C.

Lopinski, G.

Lourtioz, J.-M.

Luebbert, C. C.

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Ma, R.

Martin, O. J. F.

Mégy, R.

Meseguer, F.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Meunier, M.

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

Moreno, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
[Crossref] [PubMed]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref] [PubMed]

Murphy, T. E.

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Nieto-Vesperinas, M.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Otte, M. A.

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Pannicia, M. A.

M. A. Pannicia, “Perfect marriage: optics and silicon,” Optik Photonik 6, 34–38 (2011).

Patskovsky, S.

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Poitras, C. B.

Reekman, G.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Regatos, D.

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Rossi, A. M.

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28(1), 54–60 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Saiz, J. M.

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref] [PubMed]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref] [PubMed]

Salem, R.

Sánchez del Río, J.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Scheffold, F.

Schmid, J. H.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Sepúlveda, B.

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

Sherwood-Droz, N.

Shi, L.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

Turner-Foster, A. C.

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Vachon, M.

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

Verstreken, K.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Videen, G.

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

Wang, D. S.

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Xia, J.

Xu, D.-X.

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

ACS Nano (1)

M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano 5(11), 9179–9186 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. 21(28), 2899–2902 (2009).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24(44), 5934–5938 (2012).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[Crossref]

J. Nanophoton. (2)

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton. 5(1), 053512 (2011).
[Crossref]

A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4(1), 041590 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Metamaterials (Amst.) (1)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.) 4(1), 15–23 (2010).
[Crossref]

Microelectron. Eng. (1)

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng. 86(12), 2437–2441 (2009).
[Crossref]

Nano Lett. (1)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[PubMed]

Nano Today (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Nat Commun (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun 4, 1527 (2013).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun 3, 1171 (2012).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun 2, 176 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

Opt. Express (7)

B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express 18(10), 10001–10015 (2010).
[Crossref] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express 18(6), 5785–5790 (2010).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011).
[Crossref] [PubMed]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Optik Photonik (1)

M. A. Pannicia, “Perfect marriage: optics and silicon,” Optik Photonik 6, 34–38 (2011).

Photon. Nanostruct.: Fundam. Appl. (1)

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl. 10(4), 345–352 (2012).
[Crossref]

Phys. Rev. Lett. (2)

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Sci Rep (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep 2, 492 (2012).
[Crossref] [PubMed]

Science (2)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Sens. Act. B (1)

K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B 163(1), 207–215 (2012).
[Crossref]

Other (6)

E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1985).

G. T. Reed, Silicon Photonics: The State of Art (John Wiley & Sons, 2008).

B. García-Cámara, Communication Architectures for Systems on Chip (Taylor and Francis, 2011), pp.249–322.

B. García-Cámara, F. González, F. Moreno, R. Gómez-Medina, J. J. Sáenz, and M. Nieto-Vesperinas, Smart Nanoparticles Technology, (InTech, 2012), Chap. 13.

C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

P. N. Prasad, Nanophotonics (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Extinction efficiency spectra of spherical particles of different semiconductor materials in vacuum (next = 1). Particle size is R = 200nmto achieve Mie resonances in the NIR range.

Fig. 2
Fig. 2

Extinction efficiency spectra of spherical particles of different semiconductor materials in vacuum (next = 1). Particle size is R = 100nm to achieve Mie resonances localized in the visible range.

Fig. 3
Fig. 3

Extinction efficiency spectra of a spherical silicon particle for several next values. Particle sizes are (a) R = 200nm and (b) R = 100nm. The three different modes, electric dipolar (ED), magnetic dipolar (MD) and magnetic quadrupolar (MQ), are labeled. Arrows show the evolution of the spectral position of resonances as the external refractive index increases. Vertical lines point the wavelengths that satisfy Kerker’s conditions in vacuum. Curves with next>1 have been shifted upwards (by adding a constant background) for clarity.

Fig. 4
Fig. 4

Extinction efficiency at the magnetic dipolar resonance wavelength in vacuum as a function of the next, for nanospheres of different semiconductor materials. The particle sizes are (a) R = 200nm and (b) R = 100nm. The evolution of the extinction efficiency of a gold nanosphere at the electric dipolar resonance wavelength is also included as a dashed line.

Fig. 5
Fig. 5

(a) Sensitivity of the extinction efficiency, at next = 1.33, for the considered semiconductor materials and for both particle sizes. (b) Spectral evolution of Qext in a silicon (solid black line) and in a gold (dashed blue line) nanoparticle of radius R = 100nm, embedded in water. (c) Spectral sensitivity of Qext, at next = 1.33for a silicon (red curve) and a gold (blue curve) nanoparticle.

Fig. 6
Fig. 6

Forward scattering and radar backward scattering cross sections of a silicon nanoparticle with R = 100nm at the magnetic dipolar resonance wavelength (λ = 773nm).

Fig. 7
Fig. 7

Polar representation of the differential scattering efficiency, in arbitrary units, of a Si nanoparticle (R = 100nm) which is illuminated by a plane wave whose wavelength satisfies (a) the zero-backward or (b) the minimum-forward condition in vacuum, for several values next. The incident light beam is linearly polarized with the electric field perpendicular to the scattering plane. A zoom of the central area is shown in the bottom part of the figure to observe in detail the evolution as next changes.

Fig. 8
Fig. 8

Forward scattering and radar backscattering efficiencies, at the wavelength that satisfies Kerker’s condition of minimum forward scattering in vacuum for a Si nanoparticle (R = 100nm) as a function of the external refractive index

Tables (1)

Tables Icon

Table 1 Semiconductor Materials with High Refractive Index

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q sca = 2 x 2 n=1 (2n+1)( | a n | 2 + | b n | 2 ) Q ext = 2 x 2 n=1 (2n+1)Re( a n + b n )
Q diff = 1 x 2 { | n (2n+1) n(n+1) ( a n π n + b n τ n ) | 2 + | n (2n+1) n(n+1) ( a n τ n + b n π n ) | 2 }
Q RBS = 1 x 2 | n (2n+1) ( _ 1) n ( a n _ b n ) | 2 Q FS = 1 x 2 | n (2n+1) ( a n + b n ) | 2
Q sca = 2 x 2 [3( | a 1 | 2 + | b 1 | 2 )+5( | a 2 | 2 + | b 2 | 2 )] Q ext = 2 x 2 [3Re( a 1 + b 1 )+5Re( a 2 + b 2 )]
Q diff = 1 x 2 { | 3 2 ( a 1 + b 1 cosθ)+ 5 6 (3 a 2 cosθ+6 b 2 cos 2 θ _ 3 b 2 ) | 2 + | 3 2 ( a 1 cosθ+ b 1 )+ 5 6 (6 a 2 cos 2 θ _ 3 a 2 +3 b 2 cosθ) | 2 }
Q RBS = 1 x 2 | _ 3( a 1 _ b 1 )+5( a 2 _ b 2 ) | 2 Q FS = 1 x 2 | 3( a 1 + b 1 )+5( a 2 + b 2 ) | 2
a 1 = b 1 , Â( a 1 )=Â( b 1 ); Á( a 1 )=Á ( b 1 ).
Sensitivity= Q ext n ext ,

Metrics