Abstract

We report a novel fiber-optic sensing architecture for the detection of paramagnetic gases. By interacting a modulated magnetic field with guided light within a microstructured optical fiber, it is possible to exploit Faraday Rotation Spectroscopy (FRS) within unprecedentedly small sample volumes. This approach, which utilizes magnetic circular birefringence and magnetic circular dichroism effects, is applied to a photonic bandgap fiber to detect molecular oxygen and operates at a wavelength of 762.309 nm. The optical fiber sensor has a 4.2 nL detection volume and 14.8 cm long sensing region. The observed FRS spectra are compared with a theoretical model that provides a first understanding of guided-mode FRS signals. This FRS guided-wave sensor offers the prospect of new compact sensing schemes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  2. E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
    [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  4. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
    [CrossRef]
  5. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
    [CrossRef] [PubMed]
  6. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express18(6), 5407–5412 (2010).
    [CrossRef] [PubMed]
  7. H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt.47(35), 6497–6501 (2008).
    [CrossRef] [PubMed]
  8. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
    [CrossRef] [PubMed]
  9. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
    [CrossRef]
  10. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
    [CrossRef] [PubMed]
  11. S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
    [CrossRef]
  12. W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
    [CrossRef] [PubMed]
  13. D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
    [CrossRef]
  14. D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
    [CrossRef]
  15. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
    [CrossRef]
  16. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.26(8), 488–490 (2001).
    [CrossRef] [PubMed]
  17. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969).
    [CrossRef]
  18. T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
    [CrossRef]
  19. D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
    [CrossRef]

2011

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
[CrossRef] [PubMed]

2010

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express18(6), 5407–5412 (2010).
[CrossRef] [PubMed]

2009

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

2008

H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt.47(35), 6497–6501 (2008).
[CrossRef] [PubMed]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

2004

2002

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

2001

1984

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

1980

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

1969

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969).
[CrossRef]

Adams, H.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Argyros, A.

Austin, E.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

Barton, G. W.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bescherer, K.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Botten, L. C.

Brown, L. R.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

Chen, F. S.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969).
[CrossRef]

Chen, W.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Curl, J. R. F.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Da, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Dürr, C. J.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Fertein, E.

Granzow, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Hansen, T.

Havey, D.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

Hodges, J.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

Hodges, J. T.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Jeng, E.

S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Jiang, S.

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

Le Coq, D.

Lee, H. W.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Lisak, D.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Long, D.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

Loock, H. P.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Look, H.-P.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

Ludvigsen, H.

Marciante, J. R.

Martijn de Sterke, C.

Martynkien, T.

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

Maslowski, P.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

McPhedran, R. C.

Miller, C.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

Miller, C. E.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Okumura, M.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Oleschuk, R. D.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

Petersen, J.

Petitprez, D.

Petrovich, M. N.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

Pollock, C. R.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Richardson, D. J.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

Ritari, T.

Robichaud, D. J.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Schmidt, M. A.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Simonsen, H.

So, S.

S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Sørensen, T.

St J Russell, P.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Statkiewicz-Barabach, G.

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

Steel, M. J.

Sun, L.

Tabor, W. J.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969).
[CrossRef]

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

Tuominen, J.

Urban, W.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Urbanczyk, W.

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

van Brakel, A.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

van Eijkelenborg, M. A.

Waechter, H.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

White, T. P.

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

Wondraczek, L.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Wysocki, G.

W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
[CrossRef] [PubMed]

S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Yeung, L. Y.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

Yu, H. C. Y.

Zhang, W.

Zhao, W.

Adv. Mater. (Deerfield Beach Fla.)

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011).
[CrossRef] [PubMed]

Anal. Chem.

H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

J. Appl. Phys.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969).
[CrossRef]

J. Chem. Phys.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002).
[CrossRef]

J. Mol. Spectrosc.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010).
[CrossRef]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Proc. SPIE

T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008).
[CrossRef]

Sens. Actuators B Chem.

E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) MC-birefringence signal as the difference of refractive indices of RHCP and LHCP light. (b) MC-dichroism signal as the difference of absorption of RHCP & LHCP light.

Fig. 2
Fig. 2

(a) Schematic of the MOF-based Faraday rotation spectroscopy setup for detecting O2 at 762.309 nm. Note: GTP – Glan Thompson polarizer, RP – Rochon polarizer, C – fiber collimator, BS – 1% beam sampler, M – mirror, AL – aspheric lens, L – lens, λ/2 – half wave plate. (b) Photograph of complete MOF gas cell with air-core solenoid and fans for air cooling. (c) Concept drawing of cell end caps with mounted glass capillary tube. (d) Electron microscope image of the HC-PCF structure. (e) Beam profile of HC-PCF output.

Fig. 3
Fig. 3

Fiber-optic based FRS spectra for the 762.309 nm A-band transition of pure O2 at gas-sample pressure P = 300.5 mbar (T ~307 K) at different coupling conditions (see insets). Dotted (black) traces show measured FRS spectra in good agreement with the solid (red) traces depicting the corresponding modeling results. Signal-to-noise ratios (SNR) are shown.

Fig. 4
Fig. 4

Evolution of peak-to-peak FRS signal amplitude depending on coupling condition (i.e., light polarization angle φ) to the HC-PCF. Coupling to a single polarization mode (see Fig. 3(a,e)) produces a minimum; a maximum occurs when both modes are excited equally (see Fig. 3(c)).

Fig. 5
Fig. 5

Peak-to-peak FRS signal amplitude dependence at different gas pressures when coupling to both polarization modes of the HC-PCF. The decrease of signal amplitude at oxygen pressures >306.6 mbar is due to dominating pressure broadening.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ^ =ε( 1+ δ L i δ C ( ω ) i δ C ( ω ) 1 δ L )
n ¯ ( ω, ω 0 )= c 2 NS ω 0 Γ D Z{ Γ D 1 ( ω ω 0 +i Γ P ) }
ε ^ ( ω )=ε( 1+ δ L 0 0 1 δ L )( 1 i δ C ( ω ) i δ C ( ω ) 1 )+ε( 0 i δ L δ C ( ω ) i δ L δ C ( ω ) 0 )

Metrics