Abstract

We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that the periodic nano-crater array on the nanofiber shows polarization dependent fiber Bragg grating (FBG) characteristics. Such FBG structures on the nanofiber may act as a 1-D photonic crystal due to the strong transverse and longitudinal confinement of the field.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007).
    [CrossRef] [PubMed]
  2. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys.10, 053003 (2008).
    [CrossRef]
  3. R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express20, 2932–2941 (2012).
    [CrossRef] [PubMed]
  4. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
    [CrossRef]
  5. R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
    [CrossRef] [PubMed]
  6. F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
    [CrossRef]
  7. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
    [CrossRef]
  8. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
    [CrossRef] [PubMed]
  9. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
    [CrossRef] [PubMed]
  10. F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012).
    [CrossRef]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
    [CrossRef]
  12. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
    [CrossRef] [PubMed]
  13. F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009).
    [CrossRef]
  14. H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
    [CrossRef] [PubMed]
  15. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
    [CrossRef]
  16. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997).
    [CrossRef]
  17. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15, 1391–1404 (1997).
    [CrossRef]
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
    [CrossRef]
  19. Zhi-Gang Zang and Wen-xuan Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109, 103106 (2011).
    [CrossRef]
  20. Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012).
    [CrossRef]
  21. Zhi-Gang Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285, 521–526 (2012).
    [CrossRef]
  22. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
    [CrossRef] [PubMed]
  23. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36, 3115–3117 (2011).
    [CrossRef] [PubMed]
  24. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express19, 15621–15626 (2011).
    [CrossRef] [PubMed]
  25. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
    [CrossRef]
  26. D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
    [CrossRef]
  27. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35, 1007–1009 (2010).
    [CrossRef] [PubMed]
  28. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16, 19169–19178 (2008).
    [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publication Inc., 1981) pp 297–328.
  30. F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009).
    [CrossRef]
  31. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005).
    [CrossRef] [PubMed]
  32. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
    [CrossRef]

2012

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012).
[CrossRef]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012).
[CrossRef]

Zhi-Gang Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285, 521–526 (2012).
[CrossRef]

R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express20, 2932–2941 (2012).
[CrossRef] [PubMed]

2011

2010

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35, 1007–1009 (2010).
[CrossRef] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

2009

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009).
[CrossRef]

F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009).
[CrossRef]

2008

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16, 19169–19178 (2008).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys.10, 053003 (2008).
[CrossRef]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

2007

2006

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
[CrossRef]

2005

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005).
[CrossRef] [PubMed]

2004

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15, 1391–1404 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Bartelt, H.

Becker, M.

Bergmann, J.

Brambilla, G.

Brückner, S.

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Ding, H.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

Ding, M.

Dutta Gupta, S.

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Fang, X.

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Franke, M.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15, 1391–1404 (1997).
[CrossRef]

Goban, A.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005).
[CrossRef] [PubMed]

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

Hakuta, K.

F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012).
[CrossRef]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express20, 2932–2941 (2012).
[CrossRef] [PubMed]

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
[CrossRef] [PubMed]

F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009).
[CrossRef]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009).
[CrossRef]

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys.10, 053003 (2008).
[CrossRef]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Kawai, Y.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Kien, F. L.

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012).
[CrossRef]

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011).
[CrossRef] [PubMed]

F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009).
[CrossRef]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009).
[CrossRef]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Kimble, H. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Lacroûte, C.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Liao, C. R.

Lindner, E.

Liu, Y.

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

Lu, P.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

Melentiev, P. N.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997).
[CrossRef]

Meng, C.

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005).
[CrossRef] [PubMed]

Miyazaki, H. T.

Morinaga, M.

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

Nakajima, K.

Nayak, K. P.

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Pototschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Rothhardt, M. W.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005).
[CrossRef] [PubMed]

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Stern, N. P.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Sugimoto, Y.

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Tong, L.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36, 3115–3117 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publication Inc., 1981) pp 297–328.

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

Wang, D. N.

Xiao, Y.

Yalla, R.

R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express20, 2932–2941 (2012).
[CrossRef] [PubMed]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

Yang, Wen-xuan

Zhi-Gang Zang and Wen-xuan Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109, 103106 (2011).
[CrossRef]

Yu, H.

Zang, Zhi-Gang

Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012).
[CrossRef]

Zhi-Gang Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285, 521–526 (2012).
[CrossRef]

Zhi-Gang Zang and Wen-xuan Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109, 103106 (2011).
[CrossRef]

Zervas, M. N.

Zhang, A. P.

Zhang, Yu-Jun

Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012).
[CrossRef]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

IEEE Photon. Tech. Lett.

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006).
[CrossRef]

J. Appl. Phys.

Zhi-Gang Zang and Wen-xuan Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109, 103106 (2011).
[CrossRef]

J. Lightwave Technol.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15, 1391–1404 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997).
[CrossRef]

J. Modern Opt.

F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012).
[CrossRef]

Laser Chem.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008).
[CrossRef]

Modern J. Opt.

Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012).
[CrossRef]

Nature

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

New J. Phys.

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys.10, 053003 (2008).
[CrossRef]

Opt. Commun.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012).
[CrossRef]

Zhi-Gang Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285, 521–526 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005).
[CrossRef]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Phys. Rev. Lett.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef] [PubMed]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012).
[CrossRef] [PubMed]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publication Inc., 1981) pp 297–328.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the fabrication setup. The phase mask splits the femtosecond laser beam into ± first orders which are then recombined by the folding mirrors (M1 and M2) to create an interference pattern at the nanofiber. A cylindrical lens is used to line focus the femtosecond laser along the nanofiber. A zero order block is used to avoid any residual zero order light in the interference region. A photodiode is connected to one end of the tapered fiber to observe the scattering of the femtosecond laser into the nanofiber guided modes. (b) Schematic diagram of the optical measurements. The transmission and reflection spectra of the fabricated nanofiber samples are simultaneously measured by varying the polarization of the input light (see text for details). NPBS and OMA denote non-polarizing beam splitter and optical multi-channel analyzer, respectively.

Fig. 2
Fig. 2

SEM images of samples fabricated by multiple-shot irradiation. (a) SEM image of a typical sample fabricated by 20-shot irradiation. (b) SEM image of a typical sample fabricated by 3-shot irradiation. The ablated structures are observed on the shadow side of the nanofiber.

Fig. 3
Fig. 3

(a) SEM image of a typical sample fabricated using single-shot irradiation. The inset shows the enlarged view. The periodic nano-crater structures are observed on the shadow side of the nanofiber. (b) The cross-sectional image of a typical nano-crater measured by tilting the nanofiber at an angle of 33°.

Fig. 4
Fig. 4

The diameter distribution of the nano-craters for two nanofiber samples, (a) Sample 1 and (b) Sample 2, fabricated using single-shot irradiation. The red squares denote the diameter of nano-craters and the gray circles denote the corresponding diameter of the nanofiber.

Fig. 5
Fig. 5

Optical characteristics of nanofiber samples fabricated using single-shot irradiation. (a) The transmission spectrum of Sample 1. The spectrum was measured with a resolution of 0.01 nm. (b) The transmission and reflection spectra of Sample 2, measured for two orthogonal polarizations, X-polarization (black curves) and Y-polarization (red curves). The transmission and reflection spectra were measured with a resolution of 0.27 nm and 2 nm, respectively. The inset shows the transmission spectrum for the Y-polarization in expanded scale.

Metrics