Abstract

Abstract: We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Finochietto, J. Aracil, Á. Ferreiro, J. P. Fernandez-Palacios Gimenez, and O. Gonzalez de Dios, “Migration strategies toward all optical metropolitan access rings,” J. Lightwave Technol.25(8), 1918–1930 (2007).
    [CrossRef]
  2. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012).
    [CrossRef]
  3. H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
    [CrossRef]
  4. X. J. Xin, L. J. Zhang, B. Liu, and J. J. Yu, “Dynamic λ-OFDMA with selective multicast overlaid,” Opt. Express19(8), 7847–7855 (2011).
    [CrossRef] [PubMed]
  5. C. F. Zhang, C. Chen, J. Huang, and K. Qiu, “Performance improvement of optical OFDMA-PON using data clipping and additional phase,” IEEE Photon. Technol. Lett.24(4), 255–257 (2012).
    [CrossRef]
  6. B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
    [CrossRef]
  7. E. Wong, “Next-generation broadband access network and technologies,” J. Lightwave Technol.30(4), 597–608 (2012).
    [CrossRef]
  8. J. Prat, J. Lazaro, P. Chanclou, R. Soila, A. M. Gallardo, A. Teixeira, G. M. TosiBeleffi, and I. Tomkos, “Results from EU project SARDANA on 10G extended reach WDM PONs,” in OFC/NFOEC, Paper OThG5 (2010).
  9. T. Pfeiffer, “Converged heterogeneous optical metro-access networks,” in ECOC, Paper Tu.5.B.1 (2010).
  10. S. Wong, W. Shaw, N. Cheng, C. M. Qiao, and L. Kazovsky, “Dynamic wavelength allocation in a converged and scalable interface for metro-access ring integrated networks,” in OFC/NFOEC, Paper OTuI6 (2008).
  11. Y. Tian, L. Leng, and Y. K. Su, “A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format,” in SPIE, Paper 71370O (2008).
  12. D. Z. Hsu, C. C. Wei, H. Y. Chen, W. Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011).
    [CrossRef] [PubMed]
  13. B. Liu, X. J. Xin, L. J. Zhang, and J. Yu, “109.92-Gb/s WDM-OFDMA Uni-PON with dynamic resource allocation and variable rate access,” Opt. Express20(10), 10552–10561 (2012).
    [CrossRef] [PubMed]
  14. C. Chen, C. F. Zhang, D. M. Liu, K. Qiu, and S. Liu, “Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units,” Opt. Lett.37(19), 3954–3956 (2012).
    [CrossRef] [PubMed]

2012

2011

2010

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

2009

H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
[CrossRef]

2007

Ahmed, J.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

Aracil, J.

Chen, B.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

Chen, C.

Chen, H. Y.

Chen, J.

D. Z. Hsu, C. C. Wei, H. Y. Chen, W. Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011).
[CrossRef] [PubMed]

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

Cvijetic, M.

Cvijetic, N.

Fernandez-Palacios Gimenez, J. P.

Ferreiro, Á.

Finochietto, J. M.

Gonzalez de Dios, O.

Hsu, D. Z.

Huang, J.

C. F. Zhang, C. Chen, J. Huang, and K. Qiu, “Performance improvement of optical OFDMA-PON using data clipping and additional phase,” IEEE Photon. Technol. Lett.24(4), 255–257 (2012).
[CrossRef]

Huang, M. F.

Huang, Y.-K.

Ip, E.

Kim, B. W.

H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
[CrossRef]

Li, W. Y.

Liu, B.

Liu, D. M.

Liu, S.

Mukherjee, B.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
[CrossRef]

Qiu, K.

Skubic, B.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

Song, H.

H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
[CrossRef]

Wang, T.

Wei, C. C.

Wong, E.

Wosinska, L.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

Xin, X. J.

Yu, J.

Yu, J. J.

Zhang, C. F.

Zhang, L. J.

IEEE Commun. Mag.

B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation,” IEEE Commun. Mag.48(11), 100–108 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm.

H. Song, B. W. Kim, and B. Mukherjee, “Multi-thread polling: a dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Comm.27(2), 134–142 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. Zhang, C. Chen, J. Huang, and K. Qiu, “Performance improvement of optical OFDMA-PON using data clipping and additional phase,” IEEE Photon. Technol. Lett.24(4), 255–257 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

J. Prat, J. Lazaro, P. Chanclou, R. Soila, A. M. Gallardo, A. Teixeira, G. M. TosiBeleffi, and I. Tomkos, “Results from EU project SARDANA on 10G extended reach WDM PONs,” in OFC/NFOEC, Paper OThG5 (2010).

T. Pfeiffer, “Converged heterogeneous optical metro-access networks,” in ECOC, Paper Tu.5.B.1 (2010).

S. Wong, W. Shaw, N. Cheng, C. M. Qiao, and L. Kazovsky, “Dynamic wavelength allocation in a converged and scalable interface for metro-access ring integrated networks,” in OFC/NFOEC, Paper OTuI6 (2008).

Y. Tian, L. Leng, and Y. K. Su, “A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format,” in SPIE, Paper 71370O (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of the proposed optical OFDMA-based metro-access integrated network and the corresponding frequency-domain description of both downlink and uplink transmission (i), the power distribution of the proposed metro-access integrated network (ii).

Fig. 2
Fig. 2

Experimental setup for the optical OFDMA-based metro-access integrated network.

Fig. 3
Fig. 3

The corresponding spectra of the points in Fig. 2. The spectrum of RF DS-OFDM signal (i), duble-sideband DS-OFDM signal after modulator (ii), after optical filter in CO (iii), after CN-1 (iv), DS-OFDM signal and the carrier used for US signal after CN-2 (v), DS and US-OFDM signal after CN-2 (vi).

Fig. 4
Fig. 4

Measured BER curves and normalized constellations of DS (i). Case 1 with three RNs; (ii). Case 2 with three RNs for the proposed metro-access integrated network.

Fig. 5
Fig. 5

Measured BER curves and normalized constellatios of US RN-1, RN-2 and RN-3 (i), the contrast of received optical power for two cases when the BER comes to 10−3 (ii).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ P i toRN =P g i α i k=1 i1 g k (1 α k ) P i toCN =P k=1 i g k (1 α k ) i=1,2 , ... n2,n1.

Metrics