Abstract

The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  2. R. M. De La Rue, “Optical delays: slower for longer,” Nat. Photonics2(12), 715–716 (2008).
    [CrossRef]
  3. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998).
    [CrossRef]
  4. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
    [CrossRef] [PubMed]
  5. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett.31(13), 1985–1987 (2006).
    [CrossRef] [PubMed]
  6. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006).
    [CrossRef] [PubMed]
  7. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express15(25), 17273–17282 (2007).
    [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
    [CrossRef]
  9. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett.26(13), 1019–1021 (2001).
    [CrossRef] [PubMed]
  10. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
    [CrossRef]
  11. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
    [CrossRef]
  12. P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
    [CrossRef]
  13. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007).
    [CrossRef] [PubMed]
  14. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett.34(3), 359–361 (2009).
    [CrossRef] [PubMed]
  15. J. Jágerská, H. Zhang, N. Le Thomas, and R. Houdré, “Radiation loss of photonic crystal coupled-cavity waveguides,” Appl. Phys. Lett.95(11), 111105 (2009).
    [CrossRef]
  16. N. Matsuda, T. Kato, K.-i. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19(21), 19861–19874 (2011).
    [CrossRef] [PubMed]
  17. H.-C. Liu and A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express20(8), 9249–9263 (2012).
    [CrossRef] [PubMed]
  18. Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Analysis of leakage losses in one-dimensional photonic crystal coupled resonator optical waveguide using 3-D finite element method,” J. Lightwave Technol.28(20), 2977–2983 (2010).
    [CrossRef]
  19. A. Martínez, J. García, P. Sanchis, F. Cuesta-Soto, J. Blasco, and J. Martí, “Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals,” Opt. Lett.32(6), 635–637 (2007).
    [CrossRef] [PubMed]
  20. M. L. Povinelli and S. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett.89(19), 191114 (2006).
    [CrossRef]
  21. D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007).
    [CrossRef]
  22. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
    [CrossRef]
  23. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
    [CrossRef]
  24. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006).
    [CrossRef]
  25. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B17(3), 387–400 (2000).
    [CrossRef]
  26. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).
  27. A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
    [CrossRef]
  28. C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19(12), 11422–11428 (2011).
    [CrossRef] [PubMed]
  29. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express20(6), 6816–6824 (2012).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

2010 (1)

2009 (2)

2008 (1)

R. M. De La Rue, “Optical delays: slower for longer,” Nat. Photonics2(12), 715–716 (2008).
[CrossRef]

2007 (7)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007).
[CrossRef] [PubMed]

A. Martínez, J. García, P. Sanchis, F. Cuesta-Soto, J. Blasco, and J. Martí, “Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals,” Opt. Lett.32(6), 635–637 (2007).
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express15(25), 17273–17282 (2007).
[CrossRef] [PubMed]

2006 (4)

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006).
[CrossRef]

J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006).
[CrossRef] [PubMed]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett.31(13), 1985–1987 (2006).
[CrossRef] [PubMed]

M. L. Povinelli and S. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett.89(19), 191114 (2006).
[CrossRef]

2005 (1)

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

2002 (3)

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

1998 (1)

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998).
[CrossRef]

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006).
[CrossRef]

Baets, R.

J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett.34(3), 359–361 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Bayindir, M.

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

Benisty, H.

Blasco, J.

Bogaerts, W.

J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett.34(3), 359–361 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Breda, A.

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

Bulu, I.

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

Canciamilla, A.

Chalcraft, A. R. A.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Cubukcu, E.

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

Cuesta-Soto, F.

De La Rue, R. M.

R. M. De La Rue, “Optical delays: slower for longer,” Nat. Photonics2(12), 715–716 (2008).
[CrossRef]

DeRose, G. A.

Dignam, M. M.

D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007).
[CrossRef]

Dumon, P.

J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett.34(3), 359–361 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Dutt, A.

Fan, S.

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett.31(13), 1985–1987 (2006).
[CrossRef] [PubMed]

M. L. Povinelli and S. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett.89(19), 191114 (2006).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Ferrari, C.

Fox, A. M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Fussell, D. P.

D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007).
[CrossRef]

García, J.

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006).
[CrossRef]

Harada, K.-i.

Hopkinson, M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Houdré, R.

Jágerská, J.

Karle, T.

Karle, T. J.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

Kato, T.

Kawaguchi, Y.

Koshiba, M.

Krauss, T.

Krauss, T. E.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

Krauss, T. F.

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007).
[CrossRef] [PubMed]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Kuramochi, E.

N. Matsuda, T. Kato, K.-i. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19(21), 19861–19874 (2011).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

Lam, S.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Le Thomas, N.

Lee, R. K.

Liu, H. Y.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Liu, H.-C.

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

Ma, J.

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

Marti, J.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Martí, J.

Martinelli, M.

Martínez, A.

Martínez, L. J.

Matsuda, N.

Mejia, C. A.

Melloni, A.

Michaeli, A.

Modinos, A.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998).
[CrossRef]

Morichetti, F.

Notomi, M.

N. Matsuda, T. Kato, K.-i. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19(21), 19861–19874 (2011).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

O’Brien, D.

O'Brien, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Oesterlé, U.

Olivier, S.

Oulton, R.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

Poon, J. K.

Povinelli, M. L.

Rattier, M.

Sahin, M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Saitoh, K.

Salib, M.

Sanchis, P.

A. Martínez, J. García, P. Sanchis, F. Cuesta-Soto, J. Blasco, and J. Martí, “Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals,” Opt. Lett.32(6), 635–637 (2007).
[CrossRef] [PubMed]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Sandhu, S.

Sanvitto, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Settle, M. D.

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

Skolnick, M. S.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Smith, C.

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

Stefanou, N.

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998).
[CrossRef]

Szymanski, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Takesue, H.

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

Taniyama, H.

N. Matsuda, T. Kato, K.-i. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19(21), 19861–19874 (2011).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

Van Thourhout, D.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

Weisbuch, C.

Whittaker, D. M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Xu, Y.

Yanik, M. F.

Yariv, A.

Zabelin, V.

Zhang, H.

J. Jágerská, H. Zhang, N. Le Thomas, and R. Houdré, “Radiation loss of photonic crystal coupled-cavity waveguides,” Appl. Phys. Lett.95(11), 111105 (2009).
[CrossRef]

Zhu, L.

Appl. Phys. Lett. (4)

J. Jágerská, H. Zhang, N. Le Thomas, and R. Houdré, “Radiation loss of photonic crystal coupled-cavity waveguides,” Appl. Phys. Lett.95(11), 111105 (2009).
[CrossRef]

M. L. Povinelli and S. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett.89(19), 191114 (2006).
[CrossRef]

D. P. Fussell and M. M. Dignam, “Engineering the quality factors of coupled-cavity modes in photonic crystal slabs,” Appl. Phys. Lett.90(18), 183121 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron.38(7), 850–856 (2002).
[CrossRef]

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron.8(4), 909–918 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett.17(6), 1199–1201 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007).
[CrossRef]

R. M. De La Rue, “Optical delays: slower for longer,” Nat. Photonics2(12), 715–716 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. B (2)

N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B57(19), 12127–12133 (1998).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73(23), 235114 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Other (1)

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of CROW structure L2S3. (b) Dispersion curve of CROW mode in L2S2 (red), L2S3 (blue) and L2S4 (magenta). Dashed line shows the fundamental mode of the isolated L2 cavity.

Fig. 2
Fig. 2

(a) Schematic picture of tight-binding prediction for the power spectrum of a CROW mode. (b) CROW power spectrum giving a large value of Q(k) compared to the isolated cavity. (c) CROW Power spectrum giving a small value of Q(k) compared to the isolated cavity.

Fig. 3
Fig. 3

(a) Mode distribution of the real part of Ey on the x-y plane 0.2a above the surface of the isolated L2 cavity. (b) Power spectrum of L2 cavity. The blue circle is the light cone. (c) Power spectrum of CROW mode in L2S3 structure with k = 0. (d) Visual test of tight-binding approximation via comparison of CROW power spectra to that of isolated L2 cavity. The blue dashed lines indicate light lines.

Fig. 4
Fig. 4

Q(k) for L2 CROWs with varying cavity separations: (a) L2S2, (b) L2S3, and (c) L2S4. Dots represent calculated values. Lines represent guides for the eye.

Fig. 5
Fig. 5

(a) Quality factor for CROWs based on different constituent cavities. Triangles indicate Q(0); circles indicate Q(kBz). Dashed lines show Q for single cavity. Calculations are performed using the TBA method. (b) Q(k) for CROWs designed with a number of separation holes equal to the first node in (a).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Q(k)=ω(k) τ 1/e
Q(k)=ω(k) U(k) P(k)
U(k) = 1 2 V dV ( ε CROW (x,y,z) | E k (x,y,z) | 2 + μ o | H k (x,y,z) | 2 ),
P(k) = S d S 1 2 Re( E k (x,y,z)× H k * (x,y,z) ),
P(k) = 1 2 μ o ε o q ω(k)/c d q x 2π d q y 2π { ε o μ o ( | E ˜ k,x ( q x , q y ) | 2 + | E ˜ k,y ( q x , q y ) | 2 ) +( | H ˜ k,x ( q x , q y ) | 2 + | H ˜ k,y ( q x , q y ) | 2 ),
E ˜ k,i ( q x , q y )= dxdy E k,i (x,y) e i( q x x+ q y y ) H ˜ k,i ( q x , q y )= dxdy H k,i (x,y) e i( q x x+ q y y )
E k (x,y)= E 0 n= e inkD E Ω (xnD,y,z) H k (x,y)= H 0 n= e inkD H Ω (xnD,y,z)
n= e inx =2π l= δ(x2πl)
| E ˜ k,i ( q x , q y ) | 2 = | E 0 | 2 ( 2π D ) m= n= δ( q x k 2πn D ) | E ˜ Ω,i ( q x , q y ) | 2 | H ˜ k,i ( q x , q y ) | 2 = | H 0 | 2 ( 2π D ) m= n= δ( q x k 2πn D ) | H ˜ Ω,i ( q x , q y ) | 2
U(k) = 1 2 V dV { ε CROW (x,y,z) E 0 2 n= m= e i(nm)kD E Ω * (xnD,y,z) E Ω (xmD,y,z) + H 0 2 n= m= e i(nm)kD H Ω * (xnD,y,z) H Ω (xmD,y,z) }
U 1 2 m= V dV{ ε CROW (x,y,z) E 0 2 | E Ω (x,y,z) | 2 + μ o H 0 2 | H Ω (x,y,z) | 2 } ,
U 1 2 m= V dV{ ε Ω ( x,y,z ) E 0 2 | E Ω (x,y,z) | 2 + μ 0 H 0 2 | H Ω (x,y,z) | 2 } m= U Ω
Q(k) ω o U Ω [ 1 2 μ o ε o ( 2π D ) q ω/c d q x 2π d q y 2π n= δ( q x k 2πn D ) × { ε o μ o ( | E ˜ Ω,x ( q x , q y ) | 2 + | E ˜ Ω,y ( q x , q y ) | 2 )+ | H ˜ Ω,x ( q x , q y ) | 2 + | H ˜ Ω,y ( q x , q y ) | 2 } ] 1

Metrics