Abstract

Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
    [CrossRef]
  2. B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
    [CrossRef]
  3. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
    [CrossRef]
  4. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
    [CrossRef]
  5. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
    [CrossRef]
  6. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
    [CrossRef]
  7. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
    [CrossRef]
  8. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt.40(9), 1423–1426 (2001).
    [CrossRef] [PubMed]
  9. K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009).
    [CrossRef] [PubMed]
  10. J. B. Khurgin, D. Yang, and Y. J. Ding, “Generation of mid-infrared radiation in the highly-absorbing nonlinear medium,” J. Opt. Soc. Am. B18(3), 340–343 (2001).
    [CrossRef]
  11. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
    [CrossRef]
  12. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004).
    [CrossRef]
  13. M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett.29(17), 2046–2048 (2004).
    [CrossRef] [PubMed]
  14. K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010).
    [CrossRef]
  15. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
    [CrossRef]
  16. G. Kh. Kitaeva, “THz generation by means of optical laser,” Laser Phys. Lett. 5, 559–576 doi: (2008).
    [CrossRef]
  17. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
    [CrossRef]
  18. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
    [CrossRef]
  19. K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008).
    [CrossRef]
  20. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12(11), 2102–2116 (1995).
    [CrossRef]
  21. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express17(8), 6623–6628 (2009).
    [CrossRef] [PubMed]
  22. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
    [CrossRef] [PubMed]
  23. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett.35(15), 2508–2510 (2010).
    [CrossRef] [PubMed]
  24. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
    [CrossRef] [PubMed]
  25. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001).
    [CrossRef]
  26. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).
  27. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
    [CrossRef] [PubMed]
  28. Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
    [CrossRef]
  29. T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
    [CrossRef]
  30. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
    [CrossRef]
  31. A. Yariv and P. Yeh, Photonics, 6th Ed. (Oxford University Press, New York, Oxford, 2007).
  32. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett.23(13), 1010–1012 (1998).
    [CrossRef] [PubMed]
  33. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002).
    [CrossRef] [PubMed]
  34. K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
    [CrossRef]
  35. K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
    [CrossRef]
  36. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
    [CrossRef] [PubMed]
  37. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express18(16), 17306–17312 (2010).
    [CrossRef] [PubMed]
  38. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012).
    [CrossRef] [PubMed]
  39. G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004).
    [CrossRef]
  40. Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011).
    [CrossRef] [PubMed]
  41. G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
    [CrossRef]
  42. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
    [CrossRef]
  43. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

Y. C. Huang, T. D. Wang, Y. H. Lin, C. H. Lee, M. Y. Chuang, Y. Y. Lin, and F. Y. Lin, “Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide,” Opt. Express19(24), 24577–24582 (2011).
[CrossRef] [PubMed]

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

2010 (4)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010).
[CrossRef]

Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett.35(15), 2508–2510 (2010).
[CrossRef] [PubMed]

S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express18(16), 17306–17312 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (3)

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

G. Kh. Kitaeva, “THz generation by means of optical laser,” Laser Phys. Lett. 5, 559–576 doi: (2008).
[CrossRef]

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008).
[CrossRef]

2007 (3)

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

2006 (1)

2005 (3)

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
[CrossRef]

2004 (4)

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004).
[CrossRef]

M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett.29(17), 2046–2048 (2004).
[CrossRef] [PubMed]

G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

2003 (2)

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
[CrossRef]

2002 (3)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002).
[CrossRef] [PubMed]

2001 (4)

1999 (1)

1998 (2)

D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett.23(13), 1010–1012 (1998).
[CrossRef] [PubMed]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

1997 (2)

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
[CrossRef] [PubMed]

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

1995 (1)

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
[CrossRef]

1971 (1)

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

1969 (1)

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Akiba, T.

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

Avetisyan, R.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

Avetisyan, Y.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001).
[CrossRef]

Avetisyan, Y. H.

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

Beigang, R.

D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

Bliss, D.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Chuang, M. Y.

Cronin-Golomb, M.

Ding, Y. J.

Eckardt, R. C.

Edamatsu, K.

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Fernelius, N.

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
[CrossRef]

Gordon, L. A.

Hanna, D. C.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Harris, J. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Hayashi, S.

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
[CrossRef]

Huang, Y. C.

Hurlbut, W.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Imai, K.

Ito, H.

S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express18(16), 17306–17312 (2010).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt.40(9), 1423–1426 (2001).
[CrossRef] [PubMed]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001).
[CrossRef]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
[CrossRef] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

Johnson, B. C.

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Jundt, D. H.

Kawase, K.

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express20(3), 2881–2886 (2012).
[CrossRef] [PubMed]

K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010).
[CrossRef]

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009).
[CrossRef] [PubMed]

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt.40(9), 1423–1426 (2001).
[CrossRef] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
[CrossRef] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

Khurgin, J. B.

Kitaeva, G. Kh.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

G. Kh. Kitaeva, “THz generation by means of optical laser,” Laser Phys. Lett. 5, 559–576 doi: (2008).
[CrossRef]

G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004).
[CrossRef]

Kovalev, S. P.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

Kozlov, V. G.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
[CrossRef]

Kuo, P. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

L’huillier, J. A.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

Lee, C. H.

Lefort, L.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Li, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Lin, A.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Lin, F. Y.

Lin, Y. H.

Lin, Y. Y.

Lynch, C.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Minamide, H.

Miyamoto, K.

Mizuno, M.

Molter, D.

Myers, L. E.

Nagano, S.

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Nakamura, K.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

Nakanishi, H.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004).
[CrossRef]

Nawata, K.

Ohno, S.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Penin, A. N.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004).
[CrossRef]

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

Pierce, J. W.

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

Puech, K.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Purhoff, H. E.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Puthoff, H. E.

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

Rau, C.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

Ross, G. W.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Sakai, H.

Sasaki, Y.

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
[CrossRef]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

Schaar, J. E.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Shi, W.

Shibuya, T.

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009).
[CrossRef] [PubMed]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Shikata, J.

Sohma, S.

Soohoo, J.

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
[CrossRef]

Suhara, T.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

Suizu, K.

K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010).
[CrossRef]

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express17(9), 7102–7109 (2009).
[CrossRef] [PubMed]

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008).
[CrossRef]

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

Sussman, S. S.

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Suzuki, Y.

Svirko, Y. P.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Taira, T.

Takahashi, H.

Taniuchi, T.

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004).
[CrossRef]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
[CrossRef] [PubMed]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

Tashiro, H.

Theuer, M.

D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

Torosyan, G.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

Tsutsui, T.

Tuchak, A. N.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

Urata, Y.

Vodopyanov, K.

Vodopyanov, K. L.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett.23(13), 1010–1012 (1998).
[CrossRef] [PubMed]

Wada, S.

Wang, P.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Wang, T. D.

Wang, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Weiss, C.

Wu, Y. S.

Xu, D.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Yakunin, P. V.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

Yang, D.

Yao, J.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

Yokoyama, H.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
[CrossRef]

Yu, X.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

Zhang, H.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Zheng, D.

Zhong, K.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Appl. Phys. B. (1)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B.78, 593–599 (2004).
[CrossRef]

Appl Phys Lett (1)

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl Phys Lett83, 3000–3002 doi:Doi (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B. (3)

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B.86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, R. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B.86(2), 197–208 (2007).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B.73(5), 511–514 (2001).
[CrossRef]

Appl. Phys. Lett. (7)

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference-frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002).

J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett.15(3), 102–105 (1969).
[CrossRef]

B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett.18(5), 181–183 (1971).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett.26(8), 418–421 (1975).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition,” Appl. Phys. Lett.71(6), 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett.68(18), 2483–2485 (1996).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett.73(12), 1610–1612 (1998).
[CrossRef]

Electron. Lett. (1)

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electron. Lett.41(12), 712–713 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting Terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron.14(2), 295–306 (2008).
[CrossRef]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005), doi:.
[CrossRef]

J. Exp. Theor. Phys. (1)

G. Kh. Kitaeva and A. N. Penin, “Parametric frequency conversion in layered nonlinear media,” J. Exp. Theor. Phys.98(2), 272–286 (2004).
[CrossRef]

J. Infrared. Millim. Te. (1)

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of Terahertz wave brightness under nonlinear-optical detection,” J. Infrared. Millim. Te.32(10), 1144–1156 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys.35(3), R1–R14 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium niobate,” Jpn. J. Appl. Phys.46(40), L982–L984 (2007).
[CrossRef]

Opt. Commun. (1)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun.283(18), 3520–3524 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (9)

Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett.35(15), 2508–2510 (2010).
[CrossRef] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
[CrossRef] [PubMed]

D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett.23(13), 1010–1012 (1998).
[CrossRef] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett.24(15), 1065–1067 (1999).
[CrossRef] [PubMed]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001).
[CrossRef] [PubMed]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett.27(16), 1454–1456 (2002).
[CrossRef] [PubMed]

M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett.29(17), 2046–2048 (2004).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett.31(7), 957–959 (2006).
[CrossRef] [PubMed]

Other (5)

A. Yariv and P. Yeh, Photonics, 6th Ed. (Oxford University Press, New York, Oxford, 2007).

K. Kawase, K. Suizu, and S. Hayashi, and T. Shibuya” Nonlinear optical terahertz wave sources,” Opt. Spectroscopy 108, 841–845, doi:Doi (2010).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Sel. Top. Quant. 14, 354–362, doi:Doi (2008).
[CrossRef]

G. Kh. Kitaeva, “THz generation by means of optical laser,” Laser Phys. Lett. 5, 559–576 doi: (2008).
[CrossRef]

T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95, 7588–7591, doi:Doi (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics