Abstract

A novel and simple method for high frequency millimeter-wave signal generation with integrated twin DFB lasers is proposed and demonstrated. Both theoretical simulation and experimental results confirm that chaos induced by large-signal direct modulation of a solitary laser diode can be suppressed by introducing adequate optical coupling from another dc biased laser diode. Frequency multiplication has been demonstrated employing such chaos suppression scheme using monolithically integrated twin DFB lasers, and low phase noise millimeter wave carrier ten times the modulation frequency is generated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  2. S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
    [CrossRef]
  3. R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
    [CrossRef]
  4. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
    [CrossRef]
  5. C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
    [CrossRef]
  6. J. Huang, C. Z. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express17(23), 20727–20734 (2009).
    [CrossRef] [PubMed]
  7. D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
    [CrossRef]
  8. L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
    [CrossRef]
  9. T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
    [CrossRef]
  10. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” J. Lightwave Technol.23(9), 2687–2695 (2005).
    [CrossRef]
  11. K. Petermann, Laser Diode Modulation and Noise (Kluwer, 1991).
  12. H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993).
    [CrossRef]
  13. J. Ohtsubo, Semiconductor Lasers Stability, Instability and Chaos (Springer, 2006), Chap. 11.
  14. S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003).
    [CrossRef]
  15. V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000).
    [CrossRef]
  16. H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
    [CrossRef] [PubMed]
  17. S. P. Hegarty, D. Goulding, B. Kelleher, G. Huyet, M.-T. Todaro, A. Salhi, A. Passaseo, and M. De Vittorio, “Phase-locked mutually coupled 1.3 μm quantum-dot lasers,” Opt. Lett.32(22), 3245–3247 (2007).
    [CrossRef]
  18. J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
    [CrossRef]

2009 (1)

2007 (3)

S. P. Hegarty, D. Goulding, B. Kelleher, G. Huyet, M.-T. Todaro, A. Salhi, A. Passaseo, and M. De Vittorio, “Phase-locked mutually coupled 1.3 μm quantum-dot lasers,” Opt. Lett.32(22), 3245–3247 (2007).
[CrossRef]

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

2006 (1)

2005 (2)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” J. Lightwave Technol.23(9), 2687–2695 (2005).
[CrossRef]

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

2003 (1)

S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003).
[CrossRef]

2002 (2)

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
[CrossRef]

2001 (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
[CrossRef]

2000 (1)

V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000).
[CrossRef]

1999 (1)

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

1998 (1)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

1995 (1)

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

1993 (1)

H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993).
[CrossRef]

Ahmed, Z.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

Bauer, S.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Bélisle, C.

Bindu, V.

V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000).
[CrossRef]

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

Brox, O.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Chen, H.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

Chen, L.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

Chen, M.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

De Vittorio, M.

Elsäßer, W.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Erzgräber, H.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Fischer, I.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Goulding, D.

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

Hegarty, S. P.

Henneberger, F.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Huang, J.

Huyet, G.

Inagaki, K.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
[CrossRef]

Kelleher, B.

Kim, D. Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

Korneyev, N.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Kreissl, J.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Laperle, C.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

Liu, H. F.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993).
[CrossRef]

Luo, Y.

Masoller, C.

J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
[CrossRef]

Mirasso, C. R.

J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
[CrossRef]

Mizuguchi, Y.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
[CrossRef]

Mulet, J.

J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
[CrossRef]

Nandakumaran, V. M.

S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003).
[CrossRef]

V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000).
[CrossRef]

Ngai, W. F.

H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993).
[CrossRef]

Novak, D.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

Ogawa, Y.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

Ogusu, M.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
[CrossRef]

Paquet, S.

Passaseo, A.

Peil, M.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Pelusi, M.

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

Pi, Y.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

Poirier, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

Qi, G.

Rajesh, S.

S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003).
[CrossRef]

Rohde, D.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

Sahin, G.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Salhi, A.

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

Seeds, A. J.

Seregelyi, J.

Sun, C. Z.

Svilans, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

Têtu, M.

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

Todaro, M.-T.

Ushakov, O.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Wang, T.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

Wen, H.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

Wen, S.

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

Wille, E.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Williams, K. J.

Wünsche, H.-J.

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Xie, S.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

Xiong, B.

Yao, J.

Zhang, J.

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

Electron. Lett. (2)

S. Bauer, O. Brox, J. Kreissl, G. Sahin, B. Sartorius, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002).
[CrossRef]

D. Y. Kim, M. Pelusi, Z. Ahmed, D. Novak, H. F. Liu, and Y. Ogawa, “Ultrastable millimetre-wave signal generation using hybrid mode locking of a monolithic DBR laser,” Electron. Lett.31(9), 733–734 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55μm InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron.29(6), 1668–1675 (1993).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60 GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wirel. Compon. Lett.11(3), 101–103 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett.10(5), 728–730 (1998).
[CrossRef]

T. Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation using two cascaded optical modulators and FWM effect in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.19(16), 1191–1193 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Laperle, M. Svilans, M. Poirier, and M. Têtu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech.47(7), 1219–1224 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

L. Chen, Y. Pi, H. Wen, and S. Wen, “All-optical mm-wave generation by using direct-modulation DFB laser and external modulator,” Microw. Opt. Technol. Lett.49(6), 1265–1267 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (2)

S. Rajesh and V. M. Nandakumaran, “Suppression of chaos in a directly modulated semiconductor laser with delayed optoelectronic feedback,” Phys. Lett. A319(3–4), 340–347 (2003).
[CrossRef]

V. Bindu and V. M. Nandakumaran, “Numerical studies on bi-directionally coupled directly modulated semiconductor lasers,” Phys. Lett. A277(6), 345–351 (2000).
[CrossRef]

Phys. Rev. A (1)

J. Mulet, C. Masoller, and C. R. Mirasso, “Modeling bidirectionally coupled single-mode semiconductor lasers,” Phys. Rev. A65(6), 063815 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

H.-J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer, “Synchronization of delay-coupled oscillators: A study of semiconductor lasers,” Phys. Rev. Lett.94(16), 163901 (2005).
[CrossRef] [PubMed]

Other (2)

J. Ohtsubo, Semiconductor Lasers Stability, Instability and Chaos (Springer, 2006), Chap. 11.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulated RF spectra of a solitary diode laser under different modulation depth: (a) m = 0.25, small signal modulation with harmonic distortion, and the hump corresponds to the enhanced RIN noise around relaxation oscillation frequency; (b) m = 0.5, period doubling; (c) m = 0.8, period quadrupling; (d) m = 0.9, chaos.

Fig. 2
Fig. 2

Simulated RF spectra of coupled laser diodes and the corresponding phase portraits. (a) and (b): κ = 0.02; (c) and (d): κ = 0.03.

Fig. 3
Fig. 3

Calculated optical spectra of LD#1 and LD#2 upon chaos suppression

Fig. 4
Fig. 4

Experimental setup for mm-wave generation with monolithically integrated twin DFB lasers. (ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; PD: photodetector.)

Fig. 5
Fig. 5

Measured (a) optical spectra and (b) RF spectra under different modulation power

Fig. 6
Fig. 6

Measured (a) optical and (b) RF spectra of light coming out of LD#1with LD#2 turned ON and OFF

Fig. 7
Fig. 7

Optical spectra of light coming out of LD#1 and LD#2

Fig. 8
Fig. 8

RF spectra under different modulation frequencies.

Fig. 9
Fig. 9

Phase noise of the generated mm-wave carrier.

Tables (1)

Tables Icon

Table 1 Typical device parameters adopted in our simulations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d E 1 dt = 1 2 (1+iα)g( N 1 - N th ) E 1 + κ τ in E 2 (tτ)exp( ω 2 τ+Δωt) d N 1 dt = I 1 eV τ c 1 N 1 Γg( N 1 - N 0 ) | E 1 | 2 d E 2 dt = 1 2 (1+iα)g( N 2 - N th ) E 2 + κ τ in E 1 (tτ)exp( ω 1 τΔωt) d N 2 dt = I 2 eV τ c 1 N 2 Γg( N 2 - N 0 ) | E 2 | 2

Metrics