Abstract

We focus on physically analyzing the origins of the numerical aperture (NA) and the spherical aberration of the microsphere with wavelength scale radius. We demonstrate that the microsphere naturally has negligible spherical aberration and high NA when the refractive index contrast (RIC) between the microsphere and its surrounding medium is about from 1.5 to 1.75. The reason is due to the spherical aberration compensation arising from the positive spherical aberration caused by the surface shape of the microsphere and the RIC and the negative spherical aberration caused by the focal shifts due to the wavelength scale dimension of the microsphere. We show that, only within the approximate region of 1.5RIC1.75 with the proper radius r of microsphere, the microsphere can generate a near-field focal spot with lateral resolution slightly beyond λ/2ns, which is also the lateral resolution limit of the dielectric microsphere. The r for each RIC can be obtained by optimizing r from 1.125λ/no to 1.275λ/no. Here λ, ns, and no are the wavelength in vacuum and the refractive indices of microsphere and its surrounding medium, respectively. For the case of the near-field focusing, we also develop a simple transform formula used to calculate the new radius from the known radius of microsphere corresponding to the original illumination wavelength when the illumination wavelength is changed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
    [CrossRef]
  2. J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
    [CrossRef] [PubMed]
  3. Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
    [CrossRef]
  4. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  5. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
    [CrossRef] [PubMed]
  6. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B29(4), 758–762 (2012).
    [CrossRef]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  8. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A22(12), 2847–2858 (2005).
    [CrossRef] [PubMed]
  9. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express16(10), 6930–6940 (2008).
    [CrossRef] [PubMed]
  10. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express17(4), 2089–2094 (2009).
    [CrossRef] [PubMed]
  11. M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express19(11), 10206–10220 (2011).
    [CrossRef] [PubMed]
  12. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express20(1), 128–140 (2012).
    [CrossRef] [PubMed]
  13. Y. Ku, C. Kuang, X. Hao, Y. Xue, H. Li, and X. Liu, “Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres,” Opt. Express20(15), 16981–16991 (2012).
    [CrossRef]
  14. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008).
    [CrossRef] [PubMed]
  15. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
    [CrossRef]
  16. D. A. Fletcher, K. E. Goodson, and G. S. Kino, “Focusing in microlenses close to a wavelength in diameter,” Opt. Lett.26(7), 399–401 (2001).
    [CrossRef] [PubMed]
  17. T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
    [CrossRef] [PubMed]
  18. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
    [CrossRef]
  19. J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
    [CrossRef] [PubMed]
  20. Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
    [CrossRef]
  21. M. S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, and H. P. Herzig, “Subwavelength-size solid immersion lens,” Opt. Lett.36(19), 3930–3932 (2011).
    [CrossRef] [PubMed]
  22. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett.35(12), 2007–2009 (2010).
    [CrossRef] [PubMed]
  23. C. J. R. Sheppard and P. Török, “Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number,” J. Opt. Soc. Am. A20(11), 2156–2162 (2003).
    [CrossRef] [PubMed]
  24. Y. Li, “Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory,” J. Opt. Soc. Am. A22(1), 68–76 (2005).
    [CrossRef] [PubMed]
  25. S. Guo, H. Guo, and S. Zhuang, “Analysis of imaging properties of a microlens based on the method for a dyadic Green’s function,” Appl. Opt.48(2), 321–327 (2009).
    [CrossRef] [PubMed]
  26. http://www.microspheres-nanospheres.com/
  27. J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
    [CrossRef] [PubMed]
  28. J. J. Stamnes, Waves in Focal Regions (Taylor & Francis Group, 1986), p456.

2012

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
[CrossRef] [PubMed]

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express20(1), 128–140 (2012).
[CrossRef] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B29(4), 758–762 (2012).
[CrossRef]

Y. Ku, C. Kuang, X. Hao, Y. Xue, H. Li, and X. Liu, “Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres,” Opt. Express20(15), 16981–16991 (2012).
[CrossRef]

2011

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express19(11), 10206–10220 (2011).
[CrossRef] [PubMed]

M. S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, and H. P. Herzig, “Subwavelength-size solid immersion lens,” Opt. Lett.36(19), 3930–3932 (2011).
[CrossRef] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

2010

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett.35(12), 2007–2009 (2010).
[CrossRef] [PubMed]

2009

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

S. Guo, H. Guo, and S. Zhuang, “Analysis of imaging properties of a microlens based on the method for a dyadic Green’s function,” Appl. Opt.48(2), 321–327 (2009).
[CrossRef] [PubMed]

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

2008

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express16(10), 6930–6940 (2008).
[CrossRef] [PubMed]

2005

2004

2003

2001

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Alegret, J.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008).
[CrossRef] [PubMed]

Backman, V.

Bewersdorf, J.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
[CrossRef] [PubMed]

Bonod, N.

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Challener, W. A.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express13(2), 526–533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express12(7), 1214–1220 (2004).
[CrossRef] [PubMed]

Cho, K.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Cuche, A.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

de León-Pérez, F.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Degiron, A.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Devaux, E.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Devilez, A.

Donegan, J. F.

Ebbesen, T. W.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Ferrand, P.

Fletcher, D. A.

Geints, Y. E.

Genet, C.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Gérard, D.

Goodson, K. E.

Gould, T. J.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
[CrossRef] [PubMed]

Guo, H.

Guo, S.

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Hao, X.

Haq, M. T.

Heifetz, A.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Herzig, H. P.

Hess, S. T.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
[CrossRef] [PubMed]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Itagi, A. V.

Jouravlev, M. V.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett.35(12), 2007–2009 (2010).
[CrossRef] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Kim, I.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Kim, J.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Kim, K. S.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett.35(12), 2007–2009 (2010).
[CrossRef] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Kim, M. S.

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Kim, W. M.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Kino, G. S.

Kong, S. C.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Ku, Y.

Kuang, C.

Laux, E.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Lee, K. S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Lee, T. S.

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

Li, H.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Li, X.

Li, Y.

Liu, X.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Luk'yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Martín-Moreno, L.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Mason, D. R.

McCloskey, D.

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008).
[CrossRef] [PubMed]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Mühlig, S.

Nakagawa, W.

Panina, E. K.

Pianta, M.

Popov, E.

Quake, S. R.

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Rigneault, H.

Rockstuhl, C.

Sahakian, A. V.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Scharf, T.

Schwartz, J. J.

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Stavrakis, S.

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

Stout, B.

Taflove, A.

Török, P.

Wang, J. J.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Wenger, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Xue, Y.

Yi, J. M.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Zemlyanov, A. A.

Zhuang, S.

Annu. Rev. Biomed. Eng.

T. J. Gould, S. T. Hess, and J. Bewersdorf, “Optical nanoscopy: from acquisition to analysis,” Annu. Rev. Biomed. Eng.14(1), 231–254 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Express

J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K. S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lighography,” Appl. Phys. Express5(2), 025201 (2012).
[CrossRef]

J Comput Theor Nanosci

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Commun.

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 1–6 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011).
[CrossRef]

Nat. Nanotechnol.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

J. J. Schwartz, S. Stavrakis, and S. R. Quake, “Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability,” Nat. Nanotechnol.5(2), 127–132 (2010).
[CrossRef] [PubMed]

Nature

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-ssembled nanoscale spherical lenses,” Nature460(7254), 498–501 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Other

J. J. Stamnes, Waves in Focal Regions (Taylor & Francis Group, 1986), p456.

http://www.microspheres-nanospheres.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a microsphere illuminated by a incident plane-wave.

Fig. 2
Fig. 2

Relations between the spherical aberration S (blue solid curve), the numerical aperture NA (green dashed curve) and the refractive index contrast RIC between the microsphere and its surrounding medium.

Fig. 3
Fig. 3

Focal shifts along the z axis of the small circular aperture with radius r and N A a =0.965 , where z=0 denotes the position of the geometrical focus and f is the focal length. (a) blue solid line: r=1.25 λ a ; red dashed line: r=3 λ a ; green dash-dotted line: r=5 λ a . (b) r=1.25 λ a and the wave front at the aperture being divided equally into five zones within the maximum aperture angle [see 3(c)]. Lines 1-5 correspond the five zones.

Fig. 4
Fig. 4

Electric field intensity ( |E | 2 ) distribution in the yz plane of the microsphere [(a)-(d)] and (e) the variation of the lateral resolution (o) along the y axis and the axial resolution (*) along the z axis with the RIC . The white circle denotes the contour of the microsphere. The parameter n o : (a)-(c) and (e) n o =1 and (d) n o =1.34 . The parameter λ : (a)-(c) and (e) λ=400nm , and (d) λ=355nm . The parameter RIC : (a) RIC=1.5 , (b) and (d) RIC=1.59 , and (c) RIC=1.75 . The radius r of the microsphere: (a) r=510nm , (b) r=490nm , (c) r=450nm , and (d) r=325nm . In (e), six sets of parameters are used: RIC=1.5 , r=510nm ; RIC=1.59 , r=490nm ; RIC=1.63 , r=480nm ; RIC=1.67 , r=470nm ; RIC=1.7 , r=460nm ; RIC=1.75 , r=450nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d=r[cos( θ o α)+sin( θ o α)cotα1],
E x (z)= A 4 { (N A a ) 2 4 cos 1 2 Ω[4+(1cosΩ) cosΩ] [ exp(jKτ) τ 2 ( 1 1 jKτ ) ] θ=Ω , jK 0 Ω χ(θ,z)(1+cosθ) cos 1 2 θ exp(jKτ) τ sinθdθ }
E y (z)=0,
E z (z)= A 4 (N A a ) 4 cos 1 2 Ω( z f +cosΩ )(1cosΩ)cosΩ [ exp(jKτ) τ 2 ( 1 1 jKτ ) ] θ=Ω ,

Metrics