Abstract

We focused partially coherent laser light onto an optical fiber end-face and captured a high-quality reflective cross-sectional image of the fiber. By analyzing the reflected light intensity distribution of the captured fiber image, we can achieve refractive-index profiling of a step-index multimode optical fiber. The measurement error caused by the reflected light from the other fiber end-face positioned in air can be greatly improved by inserting that end of the fiber into water. This simple and easy technique for fiber index profiling by employing reduced-coherence laser light is very useful in determining the refractive index profiles of various multimode optical fibers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ikeda, M. Tateda, and H. Yoshikiyo, “Refractive index profile of a graded index fiber: measurement by a reflection method,” Appl. Opt.14(4), 814–815 (1975).
    [CrossRef] [PubMed]
  2. Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
    [CrossRef]
  3. Y. Youk and D. Y. Kim, “A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides,” Opt. Commun.262(2), 206–210 (2006).
    [CrossRef]
  4. Y. Youk and D. Y. Kim, “Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide,” Appl. Opt.46(15), 2949–2953 (2007).
    [CrossRef] [PubMed]
  5. I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
    [CrossRef]
  6. F.-W. Sheu and J.-Y. Chen, “Fiber cross-sectional imaging by manually controlled low coherence light sources,” Opt. Express16(26), 22113–22118 (2008).
    [CrossRef] [PubMed]
  7. F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images of various optical fibers using low coherence transformed laser light,” Physics Procedia19, 325–328 (2011).
    [CrossRef]
  8. D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
    [CrossRef]
  9. F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
    [CrossRef]
  10. F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images and averaged optical patterns of photonic crystal fibers using partially incoherent laser light,” J. Euro. Opt. Soc. Rap. Public. (accepted for publication).
  11. Thorlabs step-index multimode fiber specification sheet, http://www.thorlabs.com/Thorcat/4200/ AFS50_125Y-SpecSheet.pdf .
  12. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1208 (1965).
    [CrossRef]

2012 (1)

F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
[CrossRef]

2011 (2)

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images of various optical fibers using low coherence transformed laser light,” Physics Procedia19, 325–328 (2011).
[CrossRef]

D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

Y. Youk and D. Y. Kim, “A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides,” Opt. Commun.262(2), 206–210 (2006).
[CrossRef]

2005 (1)

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

2002 (1)

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

1975 (1)

1965 (1)

Bozhevolnyi, S. I.

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Chen, C.-H.

F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
[CrossRef]

Chen, J.-Y.

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images of various optical fibers using low coherence transformed laser light,” Physics Procedia19, 325–328 (2011).
[CrossRef]

F.-W. Sheu and J.-Y. Chen, “Fiber cross-sectional imaging by manually controlled low coherence light sources,” Opt. Express16(26), 22113–22118 (2008).
[CrossRef] [PubMed]

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images and averaged optical patterns of photonic crystal fibers using partially incoherent laser light,” J. Euro. Opt. Soc. Rap. Public. (accepted for publication).

Chiu, Y.-S.

D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
[CrossRef]

Henningsen, J.

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Ikeda, M.

Kim, D. Y.

Y. Youk and D. Y. Kim, “Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide,” Appl. Opt.46(15), 2949–2953 (2007).
[CrossRef] [PubMed]

Y. Youk and D. Y. Kim, “A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides,” Opt. Commun.262(2), 206–210 (2006).
[CrossRef]

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

Malitson, I. H.

Park, Y.

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

Pedersen, J.

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Radko, I. P.

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Seong, N. H.

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

Sheu, F.-W.

F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
[CrossRef]

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images of various optical fibers using low coherence transformed laser light,” Physics Procedia19, 325–328 (2011).
[CrossRef]

D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
[CrossRef]

F.-W. Sheu and J.-Y. Chen, “Fiber cross-sectional imaging by manually controlled low coherence light sources,” Opt. Express16(26), 22113–22118 (2008).
[CrossRef] [PubMed]

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images and averaged optical patterns of photonic crystal fibers using partially incoherent laser light,” J. Euro. Opt. Soc. Rap. Public. (accepted for publication).

Tateda, M.

Volkov, V. S.

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Wang, D.-A.

D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
[CrossRef]

Weng, C.-Y.

F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
[CrossRef]

Yoshikiyo, H.

Youk, Y.

Y. Youk and D. Y. Kim, “Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide,” Appl. Opt.46(15), 2949–2953 (2007).
[CrossRef] [PubMed]

Y. Youk and D. Y. Kim, “A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides,” Opt. Commun.262(2), 206–210 (2006).
[CrossRef]

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

Appl. Opt. (2)

J. Euro. Opt. Soc. Rap. Public. (1)

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images and averaged optical patterns of photonic crystal fibers using partially incoherent laser light,” J. Euro. Opt. Soc. Rap. Public. (accepted for publication).

J. Opt. Soc. Am. (1)

Laser Phys. Lett. (1)

I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, “Near-field mapping of surface refractive-index distributions,” Laser Phys. Lett.2(9), 440–444 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Park, N. H. Seong, Y. Youk, and D. Y. Kim, “Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre,” Meas. Sci. Technol.13(5), 695–699 (2002).
[CrossRef]

Opt. Commun. (2)

Y. Youk and D. Y. Kim, “A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides,” Opt. Commun.262(2), 206–210 (2006).
[CrossRef]

F.-W. Sheu, C.-Y. Weng, and C.-H. Chen, “Improved fabrication of circular-grating microstructured devices using partially spatially incoherent ultraviolet laser light,” Opt. Commun.285(13–14), 2990–2995 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

D.-A. Wang, F.-W. Sheu, and Y.-S. Chiu, “In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging,” Opt. Lasers Eng.49(7), 954–961 (2011).
[CrossRef]

Physics Procedia (1)

F.-W. Sheu and J.-Y. Chen, “Observing cross-sectional images of various optical fibers using low coherence transformed laser light,” Physics Procedia19, 325–328 (2011).
[CrossRef]

Other (1)

Thorlabs step-index multimode fiber specification sheet, http://www.thorlabs.com/Thorcat/4200/ AFS50_125Y-SpecSheet.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for capturing the reflective fiber cross-sectional image with partially coherent laser light. MO, microscope objective; PC, personal computer; CCD, charge-coupled device; and DPSS, diode-pumped solid-state.

Fig. 2
Fig. 2

(a) The captured reflective fiber cross-sectional image in the initial test. (b) The calculated overall two-dimensional refractive index distribution on the fiber cross-section. The corresponding length per pixel is 0.258 μm. (c) The transverse one-dimensional refractive index profile across the fiber center in the horizontal direction. The dotted lines indicate the chosen boundaries for the two parts to retrieve the mean values of the refractive indices.

Fig. 3
Fig. 3

(a) The newly captured reflective cross-sectional image of the fiber in the revised setup. (b) The newly calculated overall two-dimensional refractive index distribution on the fiber cross-section. The corresponding length per pixel is 0.258 μm. (c) The amended transverse one-dimensional refractive index profile across the fiber center in the horizontal direction. The dotted lines indicate the chosen boundaries for the two parts to retrieve the mean values of the refractive indices.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R= ( n1 n+1 ) 2 .
R= I R I in = I out β I in ,
n core = 1+ R core 1 R core ,

Metrics