J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).

[CrossRef]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).

[CrossRef]
[PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).

[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).

[CrossRef]

G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).

[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).

[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).

[CrossRef]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).

[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005).

[CrossRef]
[PubMed]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).

[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).

[CrossRef]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).

[CrossRef]
[PubMed]

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).

[CrossRef]

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).

[CrossRef]
[PubMed]

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).

[CrossRef]

G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009).

[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).

[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).

[CrossRef]

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).

[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).

[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).

[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).

[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).

[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).

[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).

[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).

[CrossRef]

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).

[CrossRef]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).

[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).

[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009).

[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).

[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).

[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).

[CrossRef]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).

[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).

[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).

[CrossRef]
[PubMed]

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).

[CrossRef]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).

[CrossRef]

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).

[CrossRef]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).

[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).

[CrossRef]
[PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).

[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).

[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).

[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).

[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).

[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005).

[CrossRef]
[PubMed]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).

[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).

[CrossRef]
[PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).

[CrossRef]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).

[CrossRef]
[PubMed]

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).

[CrossRef]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).

[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).

[CrossRef]
[PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).

[CrossRef]
[PubMed]

M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).