Abstract

Optical connects will become a key point in the next generation of integrated circuits, namely the upcoming nanoscale optical chips. In this context, nano-optical wireless links using nanoantennas have been presented as a promising alternative to regular plasmonic waveguide links, whose main limitation is the range propagation due to the metal absorption losses. In this paper we present the complete design of a high-capability wireless nanolink using matched directive nanoantennas. It will be shown how the use of directive nanoantennas clearly enhances the capability of the link, improving its behavior with respect to non-directive nanoantennas and largely outperforming regular plasmonic waveguide connects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  2. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).
    [CrossRef]
  3. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
    [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
    [CrossRef]
  5. G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009).
    [CrossRef]
  6. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).
    [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  8. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
    [CrossRef]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
    [CrossRef] [PubMed]
  10. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
    [CrossRef]
  11. H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
    [CrossRef]
  12. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
    [CrossRef]
  13. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  14. M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).
  15. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
    [CrossRef] [PubMed]
  16. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
    [CrossRef]
  17. M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).
  18. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).
  19. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).
  20. Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).
  21. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
    [CrossRef] [PubMed]
  22. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).
    [CrossRef]
  23. M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).
    [CrossRef] [PubMed]
  24. L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).
    [CrossRef]
  25. S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).
    [CrossRef]
  26. P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
    [CrossRef]
  27. P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).
    [CrossRef]
  28. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).
    [CrossRef]
  29. J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
    [CrossRef]
  30. O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).
    [CrossRef]
  31. J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
    [CrossRef]
  32. J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).
  33. M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).
    [CrossRef] [PubMed]

2013 (1)

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

2012 (3)

2011 (2)

2010 (4)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

2009 (4)

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).
[CrossRef]

G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009).
[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).
[CrossRef]

2007 (1)

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
[CrossRef]

2006 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

2005 (7)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
[CrossRef]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005).
[CrossRef]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

1997 (1)

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
[CrossRef]

1990 (1)

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).
[CrossRef]

1982 (1)

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).
[CrossRef] [PubMed]

Araújo, M.

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

Araújo, M. G.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).

Bértolo, J.

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

Biagioni, P.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

Bote, L.

Brongersma, M. L.

Chew, W. C.

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
[CrossRef]

Cui, Z.

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).
[CrossRef] [PubMed]

Ergul, O.

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).
[CrossRef]

Fan, S.

Feichtner, T.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Glisson, A. W.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
[CrossRef]

Goldberg, D.

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).

Gurel, L.

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).
[CrossRef]

Han, Z.

He, S.

Hecht, B.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
[CrossRef]

Huang, J.-S.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

Jarvenpaa, S.

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
[CrossRef]

Kern, A. M.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Klemm, M.

M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).

Kocabas, S. E.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
[CrossRef]

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Landesa, L.

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).
[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).
[CrossRef] [PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).
[CrossRef]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

Liu, L.

Lu, C.-C.

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Martin, O. J. F.

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

Miller, D. A. B.

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

Obelleiro, F.

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012).
[CrossRef]

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012).
[CrossRef] [PubMed]

M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012).
[CrossRef] [PubMed]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011).
[CrossRef]

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Rao, S. M.

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
[CrossRef]

Rivero, J.

Rodríguez, J.

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Solís, D. M.

Song, J.

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
[CrossRef]

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Taboada, J.

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

Taboada, J. M.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Taskinen, M.

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
[CrossRef]

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).
[CrossRef]

van Hulst, N. F.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Veronis, G.

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Whitesides, G. M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Wilton, D. R.

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
[CrossRef]

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Yla-Oijala, P.

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).
[CrossRef]

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
[CrossRef]

Yu, Z.

Appl. Phys. Lett. (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

Chem. Rev. (1)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

Electromagnetics (1)

S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990).
[CrossRef]

IEEE Trans. Antennas Propag. (4)

P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005).
[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997).
[CrossRef]

O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (2)

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Nat. Photon. (2)

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010).
[CrossRef]

New J. Phys. (1)

H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010).
[CrossRef] [PubMed]

Proceedings of the IEEE (1)

J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).

Prog. Electromagn. Res. (1)

J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010).
[CrossRef]

Radio Sci. (1)

P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005).
[CrossRef]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other (6)

M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the proposed optical wireless interconnect using directive nanoantennas; (a) Transmitting side: Yagi-Uda nanoantenna driven by a coplanar MIM waveguide. All metallic structures are made of silver, with εr = −19.4397 − 0.4606 j at λ0 = 650 nm (ejωt convention for time-harmonic variation), and embedded in glass, with refractive index ng = 1.451. An impedance matching dielectric nanoparticle is included at the gap of the feed element. (b) Receiving side: Yagi-Uda nanoantenna and impedance matching nanoparticle (same design as in Tx) connected to the receiving MIM, which is terminated with a matched load. Upper-right inset: detailed image of the Rx waveguide matched load termination. Lower inset: proposed layout.

Fig. 2
Fig. 2

(a) Linear cut of the electric field strength on the gap of a 6 μm MIM waveguide terminated by an open end and a matched load; (b) Linear cut of the electric field strength on the gap of the transmitting waveguide of Fig. 1(a) connected to the nanoantenna without impedance matching nanoparticle, and with impedance matching nanoparticle. Respective best fits are shown in dashed lines.

Fig. 3
Fig. 3

Electric near field distribution (V/m) on transverse planes to the (a) transmit, and (b) receive nanosystems as described in Fig. 1, respectively.

Fig. 4
Fig. 4

Power transfer for MIM plasmonic waveguide connect, broadcast wireless connect using matched dipole nanoantennas, and directive wireless connect using matched directive Yagi-Uda nanoantennas.

Metrics